Electronic Supplementary Material (ESI) for Chemical Science. This journal is © The Royal Society of Chemistry 2018

Supporting Information

Table of Contents

General Remarks	S2
General Procedure for the Dehydrogenative mono-Arylation	S2
Analysis Data of Arylated Products	S3
Formation of S _N Ar Products with ortho- and para- halogenated Nitroarene Substrates	S25
Utilizing para-subsituted Nitroarenes as Arylation Substrates	S26
Utilizing other Electron Deficient Arenes (i.e. not nitroarenes) as Electrophiles	S27
General Procedure for the Arylation of Substrates for Reactivity Predictions	S28
Analysis Data of pKa Reactivity Prediction Products	S28
General Two-step Preparation of All Carbon Quaternary Center Containing Compounds	S29
Analysis Data for All Carbon Quaternary Center Containing Compounds Prepared in Two Steps	S30
General One-pot Preparation of all Carbon Quaternary Center Containing Compounds	S30
Analysis Data of all Carbon Quaternary Center Containing Compounds Prepared via One-pot Method	d S31
Experimental Procedures for the Formation of Heterocycles and Intermediates	S39
Analysis Data of Heterocycles and Intermediates	S40
Analysis Data of Arylation Products Formed with para-substituted Nitroarenes	S41
¹ H NMR Study of DMS in Crude Reaction Mixture	S43
Refrences	S46
X-Ray Diffraction Data – Compound 4g	S47
X-Ray Diffraction Data – Compound 12s	S59
Computational details and xyz coordinates	S64
¹ H and ¹³ C NMR of Products	S85

General Remarks

All reactions were carried out in oven-dried glassware under air with magnetic stirring. All nitroarene compounds, except 2b and 2c, were purchased from Sigma-Aldrich Co. or Oakwood Chemicals and used without further purification. Nitroarene coupling partners 2b and 2c were synthesized via literature protocols.¹ All activated $C(sp^3)$ -H bond substrates, with the exception of 1a, 1s, 5b, 7c and 7e, were purchased from Sigma-Aldrich Co. or Oakwood Chemicals and used without further purification. Substrates 1a, 1s, 5b, 7c and 7e were synthesized via literature protocols.² All reactions were monitored by thin-layer chromatography (TLC) with E. Merck silica gel 60 F254 pre-coated plates (0.25 mm). Silica gel (particle size 0.032-0.063 mm) purchased from SiliCycle was used for flash chromatography. Proton (¹H) and carbon (¹³C) NMR spectra were recorded on a Bruker AV-400 (or a Bruker DRX-600) spectrometer operating at 400 MHz (or 600 MHz) for proton and 100 MHz (or 151 MHz) for carbon nuclei using CDCl₃ [or DMSO-d6] as solvent. Chemical shifts are expressed as parts per million (δ , ppm) and are referenced to 7.26 (CDCl₃) or 2.50 (DMSO-d6) for ¹H NMR and 77.00 (CDCl₃) or 40.45 (DMSO-d6) for ¹³C NMR. Proton signal data uses the following abbreviations: s = singlet, d = doublet, dd = doublet of doublets, ddd = doublet of doublet of doublet of doublets, ddt = doublet of doublets of triplets, dt = doublet of triplets, t = triplet, td = triplet of doublets, q = quartet, dq = doublet of quartets, m = quartetmultiplet and J = coupling constant. High Resolution Mass Spectrometry was performed on a Shimadzu LCMS-IT-TOF under the conditions of electrospray ionization (ESI) in both positive and negative mode. Melting points and ranges were recorded on Mettler Toledo MP50 melting point system.

General Procedure for the Dehydrogenative mono-Arylation

t-BuOK (224.0 mg, 2.0 mmol, 2.0 equiv) was added in one portion to a solution of methyl phenylacetate **1** (150 mg, 1.0 mmol) and nitrobenzene **2** (246 mg, 2.0 mmol, 2.0 equiv) in dry DMSO (5 mL) at room temperature. Once the base was added, the mixture was stirred in an open flask at room temperature for 30 minutes. The reaction was quenched via the addition of saturated NH₄Cl solution (5 mL). The resulting mixture was extracted with ethyl acetate (3×10 mL). The organic layers were combined, washed with brine (10 mL), dried over anhydrous Na₂SO₄, filtered and concentrated in *vacuo*. The crude product was purified by column chromatography (Hexanes:Ethyl Acetate = 10:1) to give methyl 2-(4-nitrophenyl)-2-phenylacetate **3** (146.9 mg, 54% yield) as a yellow oil.

¹H NMR (400 MHz, CDCl₃) δ 8.17 (d, *J* = 9.2 Hz, 2H), 7.50 (d, *J* = 8.8 Hz, 2H), 7.37-7.29 (m, 5H), 5.13 (s, 1H), 3.78 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 171.8, 147.0, 145.8, 137.1, 129.6, 128.9, 128.4, 127.8, 123.7, 56.5, 52.6; HRMS (ESI): Exact mass calcd. for C₁₅H₁₄NO₄ [M+H]⁺: 27222.0917. Found: 272.0912.

Analysis Data of Arylated Products

1. methyl 2-(3-cyano-4-nitrophenyl)-2-phenylacetate (3a)

Yellow oil, 72% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.26 (d, J = 8.8 Hz, 1H), 7.86 (d, J = 1.6 Hz, 1H), 7.77 (dd, J = 2.0, 8.4 Hz, 1H), 7.39-7.27 (m, 5H), 5.15 (s, 1H), 3.79 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 170.9, 147.2, 146.2, 136.0, 135.7, 133.9, 129.3, 128.4, 128.2, 125.6, 114.8, 108.1, 55.9, 52.9; HRMS (ESI): Exact mass calcd. for C₁₆H₁₂N₂O₄Na [M+Na]⁺: 319.0686. Found: 319.0689.

2. methyl 5-(2-methoxy-2-oxo-1-phenylethyl)-2-nitrobenzoate (3b)

Yellow oil, 35% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.87 (d, *J* = 8.4 Hz, 1H), 7.67 (d, J = 1.6 Hz, 1H), 7.41 (dd, *J* = 2.0, 8.0 Hz, 1H), 7.38-7.25 (m, 5H), 5.10 (s, 1H), 3.90 (s, 3H), 3.77 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 171.4, 165.7, 146.9, 144.4, 136.7, 131.8, 130.0, 129.1, 128.3, 128.1,

127.9, 124.2, 56.3, 53.3, 52.8; HRMS (ESI): Exact mass calcd. for C₁₇H₁₅NO₆Na [M+Na]⁺: 352.0789. Found: 352.0792.

3. *tert*-butyl 5-(2-methoxy-2-oxo-1-phenylethyl)-2-nitrobenzoate (**3b**')

Colorless oil, 50% yield. ¹H NMR (600 MHz, CDCl₃) δ 7.79 (d, *J* = 8.4 Hz, 1H), 7.66 (d, J = 2.0 Hz, 1H), 7.55 (dd, *J* = 2.0, 8.4 Hz, 1H), 7.35 (t, *J* = 7.5 Hz, 1H), 7.28-7.32 (m, 3H), 5.10 (s, 1H), 3.77 (s, 3H), 1.55 (s, 9H); ¹³C NMR (151 MHz, CDCl₃) δ 171.5, 164.0, 147.3, 143.9, 136.8, 131.4, 130.2, 129.12, 129.10 128.4, 128.0, 123.9, 83.9, 56.3, 52.7, 27.7; HRMS (ESI): Exact mass calcd. for C₂₀H₂₁NO₆Na [M+Na]⁺: 394.1261. Found: 394.1257.

4. methyl 2-(3-(dimethylcarbamoyl)-4-nitrophenyl)-2-phenylacetate (3c)

Yellow oil, 55% yield. ¹H NMR (600 MHz, DMSO-d6) δ 8.16 (d, J = 8.6 Hz, 1H), 7.63 (dd, J = 8.6, 2.0 Hz, 1H), 7.48 (d, J = 2.0 Hz, 1H), 7.38-7.33 (m, 4H), 7.30 (t, J = 7.0 Hz, 1H) 5.49 (s, 1H), 3.70 (s, 3H), 3.00 (s, 3H), 2.76 (s, 3H); ¹³C NMR (151 MHz, DMSO-d6) δ 171.9, 166.9, 146.7, 144.3, 138.3, 133.4, 130.5, 129.4 (2C), 128.8 (2C), 128.6, 128.0, 125.4, 55.3, 53.0, 38.3, 34.7; HRMS (ESI): Exact mass calcd. for C₁₈H₁₉N₂O₅ [M+H]⁺: 343.1288. Found: 343.1281.

5. methyl 2-(6-nitro-[1,1'-biphenyl]-3-yl)-2-phenylacetate (3d)

Yellow oil, 46% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.83 (d, J = 8.8 Hz, 1H), 7.47-7.29 (m, 12H), 5.12 (s, 1H), 3.78 (s, 3H), 2.27 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 171.9, 148.1, 143.3,

137.2, 137.1, 136.6, 132.2, 129.0, 128.6 128.4, 128.3, 127.9, 124.4, 56.5, 52.6; HRMS (ESI): Exact mass calcd. for C₂₁H₁₈NO₄ [M+H]⁺: 348.1230. Found: 348.1224.

6. methyl 2-(4-nitro-3-(phenylthio)phenyl)-2-phenylacetate (3e)

Yellow solid, m.p. 95-96 °C. 35% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.17 (d, *J* = 8.8 Hz, 1H), 7.50-7.40 (m, 5H), 7.26-7.23 (m, 3H), 7.12 (dd, *J* = 1.6, 8.4 Hz, 1H), 7.06-7.03 (m, 2H), 6.73 (d, *J* = 1.6 Hz, 1H), 4.83 (s, 1H), 3.62 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 171.4, 144.7, 143.7, 139.9, 136.6, 135.8, 130.6, 130.04, 129.96, 128.9, 128.3, 127.7, 125.8, 125.2, 56.4, 52.5; HRMS (ESI): Exact mass calcd. for C₂₁H₁₇NO4S [M-H]⁻: 378.0806. Found: 378.0816.

7. methyl 2-(3-(1H-indol-1-yl)-4-nitrophenyl)-2-phenylacetate (3f)

Yellow oil, 62% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.00 (d, J = 8.0 Hz, 1H), 7.70-7.67 (m, 1H), 7.58 (d, J = 2.0 Hz, 1H), 7.51 (dd, J = 1.6, 8.4 Hz, 1H), 7.40-7.33 (m, 6H), 7.22-7.14 (m, 3H), 6.73 (d, J = 2.8 Hz, 1H), 5.15 (s, 1H), 3.80 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 171.5, 145.2, 144.6, 136.8, 136.4, 132.8, 129.8, 129.1, 128.9, 128.31, 128.25, 128.1, 127.8, 125.7, 122.9, 121.3, 120.9, 109.4, 105.1, 56.3, 52.8; HRMS (ESI): Exact mass calcd. for C₂₃H₁₈N₂O₄ [M-H]⁻: 385.1194. Found: 385.1200.

8. methyl 2-(3-(9H-carbazol-9-yl)-4-nitrophenyl)-2-phenylacetate (3g)

Yellow oil, 70% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.15-8.11 (m, 3H), 7.67 (d, J = 1.6 Hz, 1H), 7.60 (dd, J = 2.0, 8.8 Hz, 1H), 7.41-7.29 (m, 9H), 7.14 (d, J = 8.4 Hz, 1H), 7.10 (d, J = 8.0 Hz, 1H), 5.17 (s, 1H), 3.79 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 171.5, 145.9, 145.6, 140.42, 140.39, 136.8, 131.4, 131.2, 129.2, 129.0, 128.3, 128.1, 126.30, 126.27, 126.2, 123.8, 120.7, 120.5, 108.99, 108.96, 56.3, 52.8; HRMS (ESI): Exact mass calcd. for C₂₇H₂₀N₂O₄ [M-H]⁻: 435.1350. Found: 435.1360.

9. methyl 2-(2-cyano-4-nitrophenyl)-2-phenylacetate (3h)

Yellow oil, 56% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.49 (d, J = 2.4 Hz, 1H), 8.36 (dd, J = 2.4, 8.8 Hz, 1H), 7.79 (d, J = 8.8 Hz, 1H), 7.39-7.32 (m, 5H), 5.55 (s, 1H), 3.80 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 170.5, 148.6, 146.6, 137.5, 135.4, 130.9, 129.3, 128.4, 127.8, 127.4, 115.5, 114.2, 54.5, 53.0; HRMS (ESI): Exact mass calcd. for C₁₆H₁₂N₂O₄Na [M+Na]⁺: 319.0680. Found: 319.0689.

10. methyl 2-(2-fluoro-4-nitrophenyl)-2-phenylacetate (3i)

Yellow oil, 61% yield. ¹H NMR (600 MHz, CDCl₃) δ 7.96 (dd, J = 8.4, 1.8 Hz, 1H), 7.91 (dd, J = 9.6, 1.8 Hz, 1H), 7.49-7.44 (m, 1H), 7.41-7.37 (m, 2H), 7.36-7.30 (m, 3H), 5.36 (s, 1H), 3.78 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 171.0, 159.6 (d, J = 252.0 Hz), 147.7 (d, J = 8.8 Hz), 135.5, 133.6 (d, J = 14.2 Hz), 130.7 (d, J = 3.2 Hz), 129.0, 128.5, 128.0, 119.1 (d, J = 4.4 Hz), 111.0 (d, J = 27.6 Hz), 52.6, 49.7 (d, J = 3.3 Hz); HRMS (ESI): Exact mass calcd. for C₁₅H₁₃FNO₄ [M+H]⁺: 290.0823. Found: 290.0810.

11. methyl 2-(2-bromo-4-nitrophenyl)-2-phenylacetate (3j)

Yellow oil, 53% yield. ¹H NMR (600 MHz, CDCl₃) δ 8.45 (d, J = 1.8 Hz, 1H), 8.09 (dd, J = 9.0, 1.8 Hz, 1H), 7.43 (d, J = 9.0 Hz, 1H), 7.41-7.37 (m, 2H), 7.36-7.32 (m, 1H), 7.29 (d, J = 7.2 Hz, 2H), 5.54 (s, 1H), 3.79 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 171.1, 147.1, 145.3, 135.9, 131.0, 129.1, 128.7, 128.1, 127.8, 125.0, 122.2, 56.2, 52.8; HRMS (ESI): Exact mass calcd. for C₁₅H₁₃BrNO₄ [M+H]⁺: 350.0022. Found: 350.0005.

12. methyl 2-(2-fluoro-6-iodo-4-nitrophenyl)-2-phenylacetate (3k)

Yellow oil, 41% yield. ¹H NMR (600 MHz, CDCl₃) δ 8.56 (dd, J = 1.6, 0.8 Hz, 1H), 7.97 (dd, J = 9.6, 1.8 Hz, 1H), 7.39-7.28 (m, 5H), 5.45 (s, 1H), 3.78 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 170.2, 158.9 (d, J = 256.4 Hz), 147.7 (d, J = 10.0 Hz), 137.9 (d, J = 15.4 Hz), 134.7, 130.5 (d, J = 3.3 Hz), 129.2 (d, J = 3.3 Hz), 128.7, 128.1, 112.2 (d, J = 28.5 Hz), 101.6 (d, J = 4.4 Hz), 58.0, 52.9; HRMS (ESI): Exact mass calcd. for C₁₅H₁₂FINO₄ [M+H]⁺: 415.9795. Found: 415.9794.

13. methyl 2-(4-nitronaphthalen-1-yl)-2-phenylacetate (31)

Yellow oil, 65% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.53 (d, *J* = 9.6 Hz, 1H), 8.15 (d, *J* = 8.0 Hz, 1H), 8.10 (d, *J* = 7.6 Hz, 1H), 7.71-7.64 (m, 2H), 7.74-7.31 (m, 6H), 5.86 (s, 1H), 3.79 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 172.1, 146.5, 141.2, 136.6, 132.3, 129.0, 128.83, 128.81, 127.94, 127.90, 125.3, 125.0, 123.8, 123.6, 123.0, 53.7, 52.7; HRMS (EI): Exact mass calcd. for C₁₉H₁₅NO₄Na [M+Na]⁺: 344.0885. Found: 344.0893.

14. methyl 2-(5-nitroisoquinolin-8-yl)-2-phenylacetate (3m)

Yellow soild, m.p. 120-122 °C. 33% yield. ¹H NMR (600 MHz, CDCl₃) δ 9.65 (br s, 1H), 8.76 (d, *J* = 6.6 Hz, 1H), 8.48 (d, *J* = 6.0 Hz, 1H), 8.42 (d, *J* = 9.0 Hz, 1H), 7.57 (d, *J* = 7.8 Hz, 1H), 7.42-7.37 (m, 2H), 7.36-7.30 (m, 3H), 5.98 (s, 1H), 3.80 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 171.5, 148.6, 145.9, 144.4, 143.1, 136.0, 129.2, 128.79, 128.76, 128.7, 128.3, 127.8, 126.6, 116.2, 53.0, 52.9; HRMS (EI): Exact mass calcd. for C₁₈H₁₅N₂O₄ [M+H]⁺: 323.1026. Found: 323.1117.

15. tert-butyl 2-(3-cyano-4-nitrophenyl)-2-phenylacetate (4a)

Tan solid, m.p. 99.9-101.7 °C. 60% yield. ¹H NMR (600 MHz, CDCl₃) δ 8.26 (d, J = 8.6 Hz, 1H), 7.83 (d, J = 2.0 Hz, 1H), 7.74 (dd, J = 8.7, 2.0 Hz, 1H), 7.39 (t, J = 7.4 Hz, 2H), 7.34 (t, J = 7.3 Hz, 1H), 7.27 (d, J = 8.9 Hz, 2H), 5.01 (s, 1H), 1.46 (s, 9H); ¹³C NMR (151 MHz, CDCl₃) δ 169.7,

147.3, 147.0, 136.7, 135.9, 134.0 (2C), 129.4 (2C), 128.3 (2C), 125.6, 115.0, 108.2, 83.1, 57.2, 28.0 (3C); HRMS (EI): Exact mass calcd. for C₁₉H₁₉N₂O₄ [M+H]⁺: 339.1339. Found: 339.1332.

16. methyl 2-(4-nitrophenyl)-2-(o-tolyl)acetate (4b)

Yellow oil, 45% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.17 (d, *J* = 8.8 Hz, 2H), 7.41 (d, *J* = 8.8 Hz, 2H), 7.25-7.23 (m, 4H), 5.32 (s, 1H), 3.78 (s, 3H), 2.27 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 172.1, 147.0, 145.2, 136.3, 135.5, 131.0, 129.9, 128.0, 127.8, 126.6, 123.6, 53.3, 52.6, 19.7; HRMS (ESI): Exact mass calcd. for C₁₆H₁₅NO₄Na [M+Na]⁺: 308.0885. Found: 308.0893.

17. methyl 2-(3-cyano-4-nitrophenyl)-2-(o-tolyl)acetate (4b')

Yellow solid, m.p. 87-88 °C. 74% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.26 (d, *J* = 8.8 Hz, 2H), 7.75 (d, *J* = 2.0 Hz, 1H), 7.67 (dd, *J* = 2.0, 8.4 Hz, 1H), 7.29-7.21 (m, 4H), 5.33 (s, 1H), 3.79 (s, 3H), 2.26 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 171.4, 147.2, 145.6, 136.2, 136.0, 134.3, 134.2, 131.4, 128.6, 127.6, 127.0, 125.5, 114.9, 108.1, 53.0, 52.7, 19.7; HRMS (ESI): Exact mass calcd. for C₁₇H₁₄N₂O₄ [M-H]⁻: 309.0881. Found: 309.0871.

18. methyl 2-(2-methoxyphenyl)-2-(4-nitrophenyl)acetate (4c)

Yellow oil, 46% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.16 (d, J = 9.2 Hz, 2H), 7.48 (d, J = 8.4 Hz, 2H), 7.32-7.27 (m, 1H), 7.12 (dd, J = 1.2, 8.0 Hz, 1H), 6.97-6.90 (m, 2H), 5.44 (s, 1H), 3.82 (s, 3H), 3.75 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 172.3, 156.6, 147.0, 145.5, 129.9, 129.1, 128.7,

126.1, 123.5, 120.8, 110.8, 55.5, 52.5, 50.4; HRMS (ESI): Exact mass calcd. for C₁₆H₁₄NO₅ [M-H]⁻: 300.0882. Found: 300.0877.

19. methyl 2-(3-cyano-4-nitrophenyl)-2-(2-methoxyphenyl)acetate (4c')

Yellow oil, 72% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.24 (d, J = 8.4 Hz, 1H), 7.82 (d, J = 1.6 Hz, 1H), 7.74 (dd, J = 2.0, 8.8 Hz, 1H), 7.36-7.31 (m, 1H), 7.21-7.19 (m, 1H), 7.01-6.97 (m, 1H), 6.92 (d, J = 8.4 Hz, 1H), 5.42 (s, 1H), 3.81 (s, 3H), 3.77 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 171.4, 156.4, 147.1, 146.1, 136.1, 134.2, 129.8, 128.5, 125.4, 124.9, 121.2, 115.1, 111.2, 107.9, 55.5, 52.8, 50.1; HRMS (ESI): Exact mass calcd. for C₁₇H₁₄N₂O₅ [M-H]⁻: 325.0830. Found: 325.0846.

20. methyl 2-(3,4-dimethoxyphenyl)-2-(4-nitrophenyl)acetate (4d)

Yellow oil, 48% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.15 (d, J = 8.4 Hz, 2H), 7.46 (d, J = 9.2 Hz, 2H), 6.83 J (s, 2H), 6.81 (s, 1H), 5.05 (s, 1H), 3.85 (s, 3H), 3.83 (s, 3H), 3.76 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 172.0, 149.2, 148.7, 147.0, 146.0, 129.4, 129.3, 123.6, 120.7, 111.5, 111.2, 56.00, 55.96, 55.8, 52.6; HRMS (EI): Exact mass calcd. for C₁₇H₁₇NO₆Na [M+Na]⁺: 354.0935. Found: 354.0948.

21. methyl 2-(3-cyano-4-nitrophenyl)-2-(3,4-dimethoxyphenyl)acetate (4d')

Yellow oil, 73% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.25 (d, J = 8.8 Hz, 1H), 7.82 (d, J = 2.0 Hz, 1H), 7.24 (dd, J = 2.0, 8.8 Hz, 1H), 6.87-6.83 (m, 2H), 6.76 (d, J = 1.6 Hz, 1H), 5.06 (s, 1H), 3.86 (s,

3H), 3.84 (s, 3H), 3.78 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 171.1, 149.5, 149.1, 147.1, 146.5, 135.5, 133.7, 128.2, 125.6, 120.6, 114.8, 111.5, 111.3, 108.0, 55.92, 55.87, 55.4, 52.9; HRMS (ESI): Exact mass calcd. for C₁₈H₁₆N₂O₆ [M-H]⁻: 355.0936. Found: 355.0949.

22. methyl 2-(4-(benzyloxy)phenyl)-2-(3-cyano-4-nitrophenyl)acetate (4e)

Yellow oil, 80% yield. ¹H NMR (600 MHz, CDCl₃) δ 8.26 (d, J = 8.4 Hz, 1H), 7.82 (d, J = 1.8 Hz, 1H), 7.73 (dd, J = 8.4, 1.2 Hz, 1H), 7.44-7.37 (m, 4H), 7.37 (t, J = 7.2 Hz, 1H), 7.22-7.16 (m, 2H), 7.02-6.96 (m, 2H), 5.07 (s, 3H), 3.79 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 171.2, 158.8, 147.3, 146.6, 136.5, 135.7, 133.7, 129.5, 128.7, 128.2, 128.1, 127.5, 125.6, 115.7, 114.9, 108.2, 70.1, 55.2, 53.0; HRMS (ESI): Exact mass calcd. for C₁₇H₁₃N₂O₅ [M-C₆H₅]⁻: 325.0800. Found: 325.0793.

23. methyl 2-(3-cyano-4-nitrophenyl)-2-(2-fluorophenyl)acetate (4f)

Yellow oil, 82% yield. ¹H NMR (600 MHz, CDCl₃) δ 8.27 (d, J = 8.4 Hz, 1H), 7.85 (d, J = 1.8 Hz, 1H), 7.76 (dd, J = 9.0, 3.0 Hz, 1H), 7.39-7.29 (m, 2H), 7.23-7.17 (m, 1H), 7.13-7.08 (m, 1H), 5.39 (s, 1H), 3.80 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 170.3, 160.1 (d, J = 247.8 Hz), 147.4, 145.0, 135.8, 134.0, 130.4 (d, J = 8.8 Hz), 129.1 (d, J = 2.3 Hz), 125.7, 125.0 (d, J = 3.3 Hz), 123.7 (d, J = 14.3 Hz), 116.1 (d, J = 21.9 Hz), 114.8, 108.2, 53.1, 49.2 (d, J = 3.3 Hz); HRMS (ESI): Exact mass calcd. for C₁₆H₁₂FN₂O₄ [M+H]⁺: 315.0776. Found: 315.0913.

24. methyl 2-(3-cyano-4-nitrophenyl)-2-(3-(trifluoromethyl)phenyl)acetate (4g)

Yellow solid, m.p. 56-57 °C. 64% yield. ¹H NMR (600 MHz, CDCl₃) δ 8.29 (d, J = 8.4 Hz, 1H), 7.86 (d, J = 1.8 Hz, 1H), 7.77 (dd, J = 9.0, 1.8 Hz, 1H), 7.62 (d, J = 7.2 Hz, 1H), 7.57-7.50 (m, 3H), 5.19 (s, 1H), 4.27 (q, J = 7.2 Hz, 2H), 1.28 (t, J = 7.2 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 169.8, 147.5, 145.4, 137.1, 135.6, 133.8, 131.67, 131.66 (q, J = 32.0 Hz), 129.9, 125.9, 125.3 (q, J = 3.2 Hz), 125.2 (q, J = 4.5 Hz), 123.6 (q, J = 272.0 Hz), 114.7, 108.4, 62.5, 55.8, 13.9; HRMS (ESI): Exact mass calcd. for C₁₈H₁₃F₃N₂O₄Na [M+Na]⁺: 401.0720 Found: 401.0679.

25. methyl 2-(2-bromophenyl)-2-(3-cyano-4-nitrophenyl)acetate (4h)

Yellow oil, 79% yield. ¹H NMR (600 MHz, CDCl₃) δ 8.19 (d, *J* = 9.0 Hz, 1H), 7.82 (d, *J* = 1.8 Hz, 1H), 7.66 (dd, *J* = 9.0, 1.8 Hz, 1H), 7.54 (dd, *J* = 8.4, 1.2 Hz, 1H), 7.34-7.27 (m, 2H), 7.20-7.13 (m, 1H), 5.55 (s, 1H), 3.72 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 170.5, 147.3, 144.7, 136.0, 135.5, 134.3, 133.7, 130.0, 129.2, 128.3, 125.5, 124.8, 114.8, 108.1, 55.1, 53.1; HRMS (ESI): Exact mass calcd. for C₁₆H₁₂BrN₂O₄ [M+H]⁺: 374.9975. Found: 374.9926.

26. methyl 2-(3-bromophenyl)-2-(4-nitrophenyl)acetate (4i)

Yellow oil, 45% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.18 (d, *J* = 8.4 Hz, 2H), 7.49-7.44 (m, 4H), 7.24-7.22 (m, 2H), 5.07 (s, 1H), 3.78 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 171.2, 147.3, 145.0, 139.3, 131.5, 131.1, 130.5, 129.5, 127.1, 123.9, 123.0, 56.1, 52.8; HRMS (ESI): Exact mass calcd. for C₁₅H₁₁NO₄Br [M-H]⁻: 347.9889. Found: 347.9877.

27. methyl 2-(3-bromophenyl)-2-(3-cyano-4-nitrophenyl)acetate (4i')

Yellow oil, 60% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.28 (d, J = 8.4 Hz, 1H), 7.84 (d, J = 2.0 Hz, 1H), 7.45 (dd, J = 8.8, 2.0 Hz, 1H), 7.48 (d, J = 7.6 Hz, 1H), 7.43 (d, J = 1.6 Hz, 1H), 7.28-7.21 (m, 2H), 5.09 (s, 1H), 3.80 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 170.4, 147.4, 145.4, 138.1, 135.6, 133.8, 131.6, 131.4, 130.9, 126.9, 125.8, 123.3, 114.7, 108.3, 55.4, 53.2; HRMS (ESI): Exact mass calcd. for C₁₆H₁₁N₂O₄Br [M-H]⁻: 372.9829. Found: 372.9832.

28. methyl 2-(3,4-dichlorophenyl)-2-(4-nitrophenyl)acetate (4j)

Yellow oil, 37% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.18 (d, J = 8.8 Hz, 2H), 7.47 (d, J = 8.8 Hz, 2H), 7.43-7.39 (m, 2H), 7.14 (dd, J = 1.8, 8.8 Hz, 1H), 5.06 (s, 1H), 3.78 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 171.0, 147.3, 144.6, 137.2, 133.0, 132.2, 130.8, 130.4, 129.4, 127.8, 123.9, 55.5, 52.9; HRMS (EI): Exact mass calcd. for C₁₅H₁₀NO₄Cl₂ [M-H]⁻: 337.9995. Found: 337.9992.

29. methyl 2-(3-cyano-4-nitrophenyl)-2-(3,4-dichlorophenyl)acetate (4j')

Yellow solid, m.p. 139-140 °C. 40% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.29 (d, *J* = 8.4 Hz, 1H), 7.84 (d, *J* = 2.4 Hz, 1H), 7.75 (dd, *J* = 8.8, 2.0 Hz, 1H), 7.46 (d, *J* = 8.4 Hz, 1H), 7.39 (d, *J* = 2.4 Hz, 1H), 7.14 (dd, *J* = 8.4, 2.0 Hz, 1H), 5.09 (s, 1H), 3.81 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 170.2, 147.5, 145.0, 136.0, 135.5, 133.7, 133.5, 133.0, 131.2, 130.3, 127.6, 125.9, 114.6, 108.5, 54.8, 53.3; HRMS (EI): Exact mass calcd. for C₁₆H₁₁Cl₂N₂O₄ [M+H]⁺: 365.0090. Found: 365.0053.

30. methyl 2-(3-cyano-4-nitrophenyl)-2-(4-fluorophenyl)acetate (4k)

Yellow soild, m.p. 89-91 °C. 73% yield. ¹H NMR (600 MHz, CDCl₃) δ 8.30 (d, J = 9.0 Hz, 1H), 7.86 (d, J = 1.8 Hz, 1H), 7.76 (dd, J = 9.0, 1.8 Hz, 1H), 7.29 (dt, J = 5.4, 1.8 Hz, 2H), 7.13-7.08 (m, 2H), 5.14 (s, 1H), 3.82 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 170.8, 162.5 (d, J = 248.8 Hz), 147.4, 146.0, 135.6, 133.7, 131.8 (d, J = 3.3 Hz), 130.1 (d, J = 8.9 Hz), 125.7, 116.4 (d, J = 20.8 Hz), 114.7, 108.3, 55.1, 53.1; HRMS (EI): Exact mass calcd. for C₁₆H₁₂FN₂O₄ [M+H]⁺: 315.0776. Found: 315.0772.

31. methyl 2-(4-bromophenyl)-2-(3-cyano-4-nitrophenyl)acetate (41)

Yellow solid, m.p. 78-80 °C. 60% yield. ¹H NMR (600 MHz, CDCl₃) δ 8.27 (d, *J* = 9.0 Hz, 1H), 7.83 (d, *J* = 1.8 Hz, 1H), 7.73 (dd, *J* = 9.0, 1.8 Hz, 1H), 7.52 (d, *J* = 8.4 Hz, 2H), 7.17 (d, *J* = 8.4 Hz, 2H), 5.09 (s, 1H), 3.79 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 170.5, 147.4, 145.6, 135.6, 135.0, 133.8, 132.5, 130.0, 125.8, 122.7, 114.7, 108.3, 55.3, 53.1; HRMS (ESI): Exact mass calcd. for C₁₆H₁₁N₂O₄Br [M-H]⁻: 372.9829. Found: 372.9837.

32. methyl 2-(3-cyano-4-nitrophenyl)-2-(4-iodophenyl)acetate (4m)

Yellow solid, m.p. 77-78 °C. 56% yield. ¹H NMR (600 MHz, CDCl₃) δ 8.27 (d, J = 9.0 Hz, 1H), 7.83 (d, J = 1.8 Hz, 1H), 7.76-7.70 (m, 3H), 7.03 (dd, J = 9.0, 1.8 Hz, 2H), 5.07 (s, 1H), 3.79 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 170.5, 147.4, 145.5, 138.5, 135.65, 135.60, 133.8, 130.2, 125.8, 114.7, 108.3, 94.3, 55.4, 53.1; HRMS (ESI): Exact mass calcd. for C₁₆H₁₁IN₂NaO₄ [M+Na]⁺: 444.9656. Found: 444.9650.

33. methyl 2-(4-bromo-2-fluorophenyl)-2-(3-cyano-4-nitrophenyl)acetate (4n)

Yellow oil, 80% yield. ¹H NMR (600 MHz, CDCl₃) δ 8.28 (d, J = 8.4 Hz, 1H), 7.83 (d, J = 1.8 Hz, 1H), 7.74 (dd, J = 8.4, 1.8 Hz, 1H), 7.35 (dd, J = 8.4, 1.2 Hz, 1H), 7.32-7.19 (m, 1H), 5.33 (s, 1H), 3.80 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 169.8, 159.9 (d, J = 252.0 Hz), 147.5, 144.3, 135.7, 133.9, 130.3 (d, J = 3.2 Hz), 128.3 (d, J = 4.4 Hz), 125.8, 123.0, 122.9 (d, J = 14.2 Hz), 119.8 (d, J = 25.4 Hz), 114.6, 108.4, 53.3, 48.8 (d, J = 2.1 Hz); HRMS (ESI): Exact mass calcd. for C₁₆H₁₁Br FN₂O₄ [M+H]⁺: 392.9881. Found: 392.9714.

34. methyl 2-(4-bromo-2-fluorophenyl)-2-(2-bromo-4-nitrophenyl)acetate (40)

Yellow oil, 52% yield. ¹H NMR (600 MHz, CDCl₃) δ 8.48 (d, J = 2.4 Hz, 1H), 8.48 (dd, J = 8.4, 2.4 Hz, 1H), 7.38 (d, J = 9.0 Hz, 1H), 7.33-7.28 (m, 2H), 7.03 (t, J = 7.8 Hz, 1H), 5.68 (s, 1H), 3.80 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 170.2, 160.3 (d, J = 253.2 Hz), 147.6, 143.4, 130.9 (d, J = 4.4 Hz), 130.6, 128.2, 128.0 (d, J = 3.2 Hz), 125.3, 122.8 (d, J = 7.7 Hz), 122.7 (d, J = 3.2 Hz), 122.5, 119.7 (d, J = 25.4 Hz), 53.1, 49.8 (d, J = 3.3 Hz); HRMS (ESI): Exact mass calcd. for C₁₅H₁₀Br₂FNNaO₄ [M+Na]⁺: 467.8853. Found: 467.8846.

35. methyl 2-(naphthalen-2-yl)-2-(4-nitrophenyl)acetate (4p)

Yellow oil, 54% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.18 (d, J = 8.4 Hz, 2H), 7.86-7.78 (m, 4H), 7.55-7.49 (m, 4H), 7.40 (dd, J = 1.2, 8.4 Hz, 1H), 5.30 (s, 1H), 3.82 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 171.8, 147.1, 145.7, 134.5, 133.2, 132.6, 129.6, 128.8, 127.9, 127.6, 127.3, 126.5, 126.4,

126.1, 123.7, 56.6, 52.7; HRMS (ESI): Exact mass calcd. for C₁₉H₁₅NO₄Na [M+Na]⁺: 344.0891. Found: 344.0893.

36. methyl 2-(3-cyano-4-nitrophenyl)-2-(naphthalen-2-yl)acetate (4p')

Yellow oil, 70% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.26 (d, J = 8.8 Hz, 1H), 7.91-7.76 (m, 6H), 7.54-7.51 (m, 2H), 7.34 (dd, J = 1.6, 8.4 Hz, 1H), 5.30 (s, 1H), 3.82 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 171.0, 147.3, 146.1, 135.8, 134.0, 133.3, 132.8, 129.4, 127.9, 127.7, 127.5, 126.9, 126.8, 125.7, 125.6, 114.8, 108.2, 56.1, 53.1; HRMS (ESI): Exact mass calcd. for C₂₀H₁₅N₂O₄ [M+H]⁺: 347.1026. Found: 347.0956.

37. 4-(4-nitrophenyl)isochroman-3-one (4q)

Yellow solid, m.p. 176-177 °C. 33% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.21 (d, J = 8.8 Hz, 2H), 7.40-7.32 (m, 5H), 6.99 (d, J = 7.2 Hz, 1H), 5.34 (AB, $J_{AB} = 14.0$ Hz, 1H), 5.26 (AB, $J_{BA} = 14.0$ Hz, 1H), 5.07 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 170.1, 147.5, 141.8, 132.8, 131.6, 129.8, 129.3, 128.3, 127.4, 125.1, 124.0, 69.6, 51.4; HRMS (ESI): Exact mass calcd. for C₁₅H₁₀NO₄ [M-H]⁻: 268.0615. Found: 268.0620.

38. ethyl 2-(3-cyano-4-nitrophenyl)-3-phenylpropanoate (4r)

Yellow oil, 32% yield. ¹H NMR (600 MHz, CDCl₃) δ 8.15 (d, J = 9.0 Hz, 1H), 7.74 (d, J = 1.8 Hz, 1H), 7.62 (dd, J = 8.4, 1.8 Hz, 1H), 7.19-7.14 (m, 2H), 7.13-7.10 (m, 1H), 6.99-6.95 (m, 2H), 4.10-4.00 (m, 2H), 3.93 (t, J = 7.8 Hz, 1H), 3.37 (dd, J = 14.4, 7.8 Hz, 1H), 2.98 (dd, J = 14.4, 7.8 Hz, 1H), 1.09 (t, J = 7.8 Hz, 1H); ¹³C NMR (151 MHz, CDCl₃) δ 171.2, 147.3, 146.0, 136.8, 135.2, 133.4, 128.7, 128.6, 127.0, 125.6, 114.8, 108.1, 61.7, 52.9, 39.7, 13.9. HRMS (ESI): Exact mass calcd. for C₁₈H₁₇N₂O₄ [M+H]⁺: 325.1183. Found: 325.1207.

39. methyl 3-(2-bromophenyl)-2-(3-cyano-4-nitrophenyl)propanoate (4s)

Orange solid, m.p. 111-113 °C. 30% yield. ¹H NMR (600 MHz, CDCl₃) δ 8.24 (d, *J* = 9.0 Hz, 1H), 7.83 (d, *J* = 1.8 Hz, 1H), 7.72 (dd, *J* = 9.0, 1.8 Hz, 1H), 7.53 (dd, *J* = 8.4, 1.8 Hz, 1H), 7.18-7.14 (m, 1H), 7.12-7.08 (m, 1H), 7.05-7.00 (m, 1H), 4.21 (t, *J* = 8.4 Hz, 1H), 3.67 (s, 3H), 3.53 (dd, *J* = 13.8, 7.8 Hz, 1H), 3.17 (dd, *J* = 13.8, 7.2 Hz, 1H); ¹³C NMR (151 MHz, CDCl₃) δ 171.5, 147.4, 145.7, 136.3, 135.1, 133.3, 133.1, 131.3, 129.0, 127.6, 125.7, 124.4, 114.7, 108.2, 52.7, 50.5, 39.9. HRMS (ESI): Exact mass calcd. for C₁₇H₁₃BrN₂NaO₄ [M+Na]⁺: 410.9951. Found: 410.9957.

40. methyl 2-(4-nitrophenyl)propanoate (4t)

Yellow oil, 15% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.18 (d, *J* = 8.8 Hz, 2H), 7.47 (d, *J* = 8.8 Hz, 2H), 3.84 (q, *J* = 7.2 Hz, 1H), 3.68 (s, 3H), 1.53 (d, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 173.6, 147.7, 147.1, 128.5, 123.8, 52.4, 45.2, 18.4.

41. 2-(3-cyano-4-nitrophenyl)-N,N-dimethyl-2-phenylacetamide (6a)

Yellow oil, 82% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.18 (d, *J* = 8.4 Hz, 1H), 7.73 (d, *J* = 2.0 Hz, 1H), 7.63 (dd, *J* = 2.0, 8.4 Hz, 1H), 7.40-7.25 (m, 5H), 5.36 (s, 1H), 3.01 (s, 3H), 2.99 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 169.4, 148.1, 146.8, 136.4, 136.2, 134.6, 129.5, 128.21, 128.16, 125.1 115.1, 107.4, 54.1, 37.5, 36.1; HRMS (ESI): Exact mass calcd. for C₁₇H₁₅N₃O₃ [M-H]⁻: 308.1041. Found: 308.1045.

42. 2-(3,4-dichlorophenyl)-N,N-dimethyl-2-(4-nitrophenyl)acetamide (6b)

Yellow solid, m.p. 121-122 °C. 45% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.14 (d, J = 8.4 Hz, 2H), 7.40-7.34 (m, 4H), 7.09 (dd, J = 2.0, 8.8 Hz, 1H), 5.28 (s, 1H), 3.01 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 169.5, 147.0, 145.9, 138.1, 132.9, 131.8, 130.72, 130.65, 129.8, 128.1, 123.7, 53.2, 37.5, 36.1; HRMS (ESI): Exact mass calcd. for C₁₆H₁₄Cl₂N₂O₃ [M-H]⁻: 351.0309. Found: 351.0313.

43. 2-(3-cyano-4-nitrophenyl)-2-(3,4-dichlorophenyl)-N,N-dimethylacetamide (6b')

Yellow solid, m.p. 172-174 °C. 79% yield. ¹H NMR (600 MHz, CDCl₃) δ 8.24 (d, J = 8.4 Hz, 1H), 7.73 (d, J = 1.8 Hz, 1H), 7.63 (dd, J = 9.0, 1.8 Hz, 1H), 7.48 (d, J = 8.4 Hz, 1H), 7.39 (d, J = 2.4 Hz, 1H), 7.14 (dd, J = 7.8, 2.4 Hz, 1H), 5.30 (s, 1H), 3.04 (s, 6H); ¹³C NMR (151 MHz, CDCl₃) δ 168.6, 147.3, 146.6, 136.5, 136.2, 134.4, 133.8, 132.9, 131.5, 130.4, 127.7, 125.5, 114.8, 108.0, 52.9, 37.7, 36.4; HRMS (ESI): Exact mass calcd. for C₁₆H₁₀Cl₂N₃O₃ [M-CH₃]⁻: 378.0407. Found: 378.0465.

44. 3-(4-nitrophenyl)indolin-2-one (6c)

Yellow solid, m.p. 134.9 °C. 40% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.35 (br s, 1H), 8.21 (d, J = 8.4 Hz, 2H), 7.42 (d, J = 8.8 Hz, 2H), 7.31 (t, J = 7.2 Hz, 1H), 7.14-7.06 (m, 2H), 6.97 (d, J = 7.6 Hz, 1H), 4.75 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 177.4, 147.4, 143.6, 141.6, 129.4, 129.1, 127.9, 125.2, 124.1, 123.1, 110.5, 52.2; HRMS (ESI): Exact mass calcd. for C₁₄H₁₁N₂O₃ [M+H]⁺: 256.0842. Found: 256.0824.

45. 3-methyl-3-(4-nitrophenyl)indolin-2-one (6d)

Yellow solid, m.p. 185-186 °C. 42% yield. ¹H NMR (400 MHz, CDCl₃) δ 9.54 (br s, 1H), 8.15 (d, *J* = 9.2 Hz, 2H), 7.51 (d, *J* = 9.2 Hz, 2H), 7.29-7.25 (m, 1H), 7.13-7.07 (m, 2H), 7.00 (d, *J* = 7.2 Hz, 1H), 1.86 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 181.2, 147.7, 147.0, 140.3, 134.0, 128.7, 127.8, 124.2, 123.6, 123.2, 110.7, 52.9, 23.5; HRMS (ESI): Exact mass calcd. for C₁₅H₁₁N₂O₃ [M-H]⁻: 267.0785. Found: 267.0775.

46. 5-(3-methyl-2-oxoindolin-3-yl)-2-nitrobenzonitrile (6d')

Yellow solid, m.p. 209-210 °C. 34% yield. ¹H NMR (600 MHz, CDCl₃) δ 8.27 (d, J = 9.0 Hz, 2H), 7.86-7.80 (m, 2H), 7.39-7.35 (m, 1H), 7.19-7.15 (m, 2H), 7.05 (d, J = 7.8 Hz, 1H), 1.87 (s, 3H);

¹³C NMR (151 MHz, CDCl₃) δ 178.9, 148.2, 147.4, 140.0, 134.1, 132.4, 132.3, 129.5, 125.7, 124.5, 123.7, 114.9, 110.9, 108.3, 52.3, 24.1; HRMS (ESI): Exact mass calcd. for $C_{16}H_{12}N_3O_3$ [M+H]⁺: 294.0873. Found: 294.0854.

47. 2-(4-nitrophenyl)-2-phenylacetonitrile (6e)

Yellow solid, m.p. 69.4 °C. 54% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.22 (d, J = 8.8 Hz, 2H), 7.55 (d, J = 8.8 Hz, 2H), 7.43-7.33 (m, 5H), 5.26 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 147.7, 142.7, 134.4, 129.5, 128.8, 128.7, 127.7, 124.3, 118.5, 42.2; HRMS (ESI): Exact mass calcd. for C₁₄H₁₁N₂O₂ [M+H]⁺: 239.0815. Found: 239.0816.

48. 5-(cyano(phenyl)methyl)-2-nitrobenzonitrile (6e')

Orange oil, 59% yield. ¹H NMR (600 MHz, CDCl₃) δ 8.35 (d, J = 9.0 Hz, 1H), 7.87-7.82 (m, 2H), 7.49-7.41 (m, 3H), 7.37-7.31 (m, 2H), 5.28 (s, 1H); ¹³C NMR (151 MHz, CDCl₃) δ 148.0, 143.2, 134.6, 133.1, 132.7, 130.0, 129.5, 127.7, 126.5, 117.5, 114.2, 109.1, 41.9. HRMS (CI): Exact mass calcd. for C₁₅H₈N₃O₂ [M-H]⁻: 262.0622. Found: 262.0593.

49. 5-(cyano(4-fluorophenyl)methyl)-2-nitrobenzonitrile (6f)

Orange oil, 62% yield. ¹H NMR (600 MHz, CDCl₃) δ 8.36 (d, J = 8.4 Hz, 1H), 7.87-7.81 (m, 2H), 7.36-7.31 (m, 2H), 7.18-7.11 (m, 2H), 5.30 (s, 1H); ¹³C NMR (151 MHz, CDCl₃) δ 163.0 (d, J = 249.9 Hz), 148.1, 143.0, 134.5, 132.7, 129.7 (d, J = 10.3 Hz), 129.0 (d, J = 3.2 Hz), 126.5, 117.3 (d,

J = 28.5 Hz), 117.0, 114.2, 109.1, 41.1. HRMS (ESI): Exact mass calcd. for C₁₅H₉FN₃O₂ [M+H]⁺: 282.0673. Found: 282.0665.

50. 5-((4-chlorophenyl)(cyano)methyl)-2-nitrobenzonitrile (6g)

Green oil, 53% yield. ¹H NMR (600 MHz, CDCl₃) δ 8.36 (d, J = 9.0 Hz, 1H), 7.87-7.80 (m, 2H), 7.43 (dd, J = 6.6, 2.4 Hz, 2H), 7.29 (dd, J = 6.6, 1.8 Hz, 2H), 5.28 (s, 1H); ¹³C NMR (151 MHz, CDCl₃) δ 148.1, 142.7, 135.8, 134.5, 132.7, 131.6, 130.2, 129.1, 126.6, 117.1, 114.1, 109.2, 41.3. HRMS (ESI): Exact mass calcd. for C₁₅H₉ClN₃O₂ [M+H]⁺: 298.0378. Found: 298.0357.

51. 5-((4-bromophenyl)(cyano)methyl)-2-nitrobenzonitrile (6h)

Orange oil, 61% yield. ¹H NMR (600 MHz, CDCl₃) δ 8.37 (d, J = 8.4 Hz, 1H), 7.86-7.80 (m, 2H), 7.60 (dd, J = 6.6, 1.8 Hz, 2H), 7.24-7.20 (m, 2H), 5.24 (s, 1H); ¹³C NMR (151 MHz, CDCl₃) δ 148.2, 142.6, 134.5, 133.2, 132.7, 132.1, 129.3, 126.6, 124.0, 117.0, 114.1, 109.3, 41.4. HRMS (CI): Exact mass calcd. for C₁₅H₇BrN₃O₂ [M-H]⁻: 339.9727. Found: 339.9712.

52. 5-((4-chloro-2-fluorophenyl)(cyano)methyl)-2-nitrobenzonitrile (6i)

Yellow oil, 32% yield. ¹H NMR (600 MHz, CDCl₃) δ 8.36 (d, J = 8.4 Hz, 1H), 7.89-7.84 (m, 2H), 7.47 (t, J = 8.4 Hz, 1H), 7.29 (dd, J = 8.4, 1.2 Hz, 1H), 7.21 (dd, J = 9.6, 1.8 Hz, 1H), 5.53 (s, 1H); ¹³C NMR (151 MHz, CDCl₃) δ 159.3 (d, J = 253.2 Hz), 148.2, 141.4, 137.2 (d, J = 10.0 Hz), 134.3, 132.6, 129.8 (d, J = 3.3 Hz), 126.6, 126.2 (d, J = 3.3 Hz), 119.5 (d, J = 14.3 Hz), 117.5 (d, J =

24.2 Hz), 116.2, 114.1, 109.2, 35.6 (d, J = 3.3 Hz). HRMS (ESI): Exact mass calcd. for $C_{15}H_8CIFN_3O_2 [M+H]^+$: 316.0284. Found: 316.0270.

53. 5-(cyano(4-methoxyphenyl)methyl)-2-nitrobenzonitrile (6j)

Orange oil, 62% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.26 (d, J = 9.0 Hz, 1H), 7.79-7.75 (m, 2H), 7.17 (d, J = 8.5 Hz, 2H), 6.86 (d, J = 8.5 Hz, 2H), 5.19 (s, 1H), 3.74 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 160.2, 147.8, 143.7, 134.4, 132.6, 129.0, 126.4, 125.0, 117.8, 115.2, 114.3, 108.8, 55.4, 41.1. HRMS (ESI): Exact mass calcd. for C₁₆H₁₁N₃NaO₃ [M+Na]⁻: 316.0693. Found: 316.0691.

54. 5-((4-(benzyloxy)phenyl)(cyano)methyl)-2-nitrobenzonitrile (6k)

Orange oil, 42% yield. ¹H NMR (600 MHz, CDCl₃) δ 8.34 (d, *J* = 13.2 Hz, 2H), 7.84 (d, *J* = 1.8 Hz, 1H), 7.82 (s, 1H), 7.44-7.37 (m, 4H), 7.36-7.33 (m, 1H), 7.23 (dd, *J* = 6.6, 1.8 Hz, 2H), 7.02 (dd, *J* = 6.6, 1.8 Hz, 1H), 5.22 (s, 1H), 5.08 (s, 2H); ¹³C NMR (151 MHz, CDCl₃) δ 159.5, 147.9, 143.6, 136.2, 134.5, 132.6, 129.1, 128.7, 128.2, 127.4, 126.4, 125.2, 117.7, 116.2, 114.3, 109.0, 70.2, 41.2. HRMS (ESI): Exact mass calcd. for C₂₂H₁₅N₃NaO₃ [M+Na]⁺: 392.1011. Found: 392.1010.

55. 5-((methylsulfonyl)(phenyl)methyl)-2-nitrobenzonitrile (61)

Orange solid, m.p. 185-186 °C. 55% yield. ¹H NMR (600 MHz, CDCl₃) δ 8.34 (d, J = 8.4 Hz, 1H), 8.12-8.07 (m, 2H), 7.65 (dd, J = 7.8, 1.8 Hz, 2H), 7.54-7.48 (m, 3H), 5.47 (s, 1H), 2.85 (s, 3H);

¹³C NMR (151 MHz, CDCl₃) δ 148.3, 139.2, 136.9, 135.1, 131.2, 130.2, 130.0, 129.2, 125.8, 114.5, 108.5, 73.0, 40.2. HRMS (ESI): Exact mass calcd. for $C_{15}H_{12}N_2NaO_4S$ [M+Na]⁺: 339.0410. Found: 339.0415.

56. 2-bromo-1-((methylsulfonyl)(phenyl)methyl)-4-nitrobenzene (6m)

Orange oil, 29% yield. ¹H NMR (600 MHz, CDCl₃) δ 8.50 (d, J = 2.4 Hz, 1H), 8.39 (d, J = 9.0 Hz, 1H), 8.26 (dd, J = 8.4, 2.4 Hz, 1H), 7.63 (dd, J = 7.8, 1.8 Hz, 2H), 7.45-7.41 (m, 3H), 6.07 (s, 1H), 2.88 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 147.9, 139.7, 131.1, 130.8, 129.8, 129.7, 129.4, 128.4, 126.0, 122.8, 71.5, 40.3. HRMS (ESI): Exact mass calcd. for C₁₄H₁₂BrNNaO₄S [M+Na]⁺: 391.9563. Found: 391.9559.

57. 2-nitro-5-(phenyl(phenylsulfonyl)methyl)benzonitrile (6n)

Yellow solid, m.p. 176-178 °C. 33% yield. ¹H NMR (600 MHz, CDCl₃) δ 8.32 (d, *J* = 9.0 Hz, 1H), 8.13 (dd, *J* = 8.4, 1.8 Hz, 1H), 8.08 (d, *J* = 1.8 Hz, 1H), 7.66-7.62 (m, 2H), 7.60 (t, *J* = 7.2 Hz, 1H), 7.46-7.38 (m, 4H), 7.37-7.31 (m, 3H), 5.41 (s, 1H); ¹³C NMR (151 MHz, CDCl₃) δ 148.0, 140.5, 137.0, 136.8, 135.0, 134.4, 130.9, 129.7, 129.3, 129.1, 129.0, 125.7, 114.5, 108.4, 74.7. HRMS (ESI): Exact mass calcd. for C₂₀H₁₄N₂NaO₄S [M+Na]⁺: 401.0566. Found: 401.0568.

58. 9-(2-nitro-5-(phenyl(pyridin-4-yl)methyl)phenyl)-9H-carbazole (60)

S23

Yellow solid, m.p. 173-174 °C. 55% yield. ¹H NMR (600 MHz, CDCl₃) δ 8.62 (br s, 2H), 8.14-8.07 (m, 3H), 7.44 (d, J = 1.8 Hz, 1H), 7.41-7.28 (m, 8H), 7.15 (d, J = 7.8 Hz, 2H), 7.12-7.05 (m, 4H), 5.62 (s, 1H); ¹³C NMR (151 MHz, CDCl₃) δ 150.5, 150.0, 149.6, 145.2, 140.3, 140.0, 131.7, 131.2, 129.4, 129.0, 127.6, 126.22, 126.20, 126.19, 124.2, 123.7, 120.6, 120.5, 108.7, 55.5. HRMS (ESI): Exact mass calcd. for C₃₀H₂₁N₃O₂ [M+H]⁺: 456.1707. Found: 456.1714.

59. 2-nitro-5-(phenyl(pyridin-4-yl)methyl)benzonitrile (6p)

Yellow solid, m.p. 156-158 °C. 57% yield. ¹H NMR (600 MHz, CDCl₃) δ 8.55 (d, J = 4.8 Hz, 2H), 8.25 (d, J = 8.4 Hz, 1H), 7.62 (d, J = 1.8 Hz, 1H), 7.54 (d, J = 8.4, 1.8 Hz, 1H), 7.38-7.33 (m, 2H), 7.32-7.28 (m, 1H), 7.08-7.04 (m, 2H), 7.02 (d, J = 6.0 Hz, 2H), 5.64 (s, 1H); ¹³C NMR (151 MHz, CDCl₃) δ 150.2, 150.0, 149.8, 146.9, 139.2, 136.0, 134.3, 129.2, 129.0, 127.9, 125.7, 124.1, 114.7, 108.2, 55.3. HRMS (ESI): Exact mass calcd. for C₁₉H₁₄N₃O₂ [M+H]⁺: 316.1081. Found: 316.1085.

Formation of S_NAr Products with ortho- and para- halogenated Nitroarene Substrates

Scheme S1. Formation of S_NAr products when utilizing *ortho-* or *para-* halogenated nitroarenes as anylation substrates

Utilizing para-subsituted Nitroarenes as Arylation Substrates

Scheme S2. Arylation of methyl 2-phenylacetate with para-substituted nitroarene substrates

These results indicate that when the *para*-position is occupied by another strongly electronwithdrawing group, dehydrogenative arylation at the *ortho*-position is possible, but with low yields. Additionally with these types of substrates, the nitro group can actually serve as a leaving group and an S_NAr -type reaction occurs. If the group in the *para*-position is not an electron-withdrawing group then no reaction takes place.

Utilizing other Electron Deficient Arenes (i.e. not nitroarenes) as Electrophiles

Scheme S3. α -arylation reactions conducted under standard conditions with a variety of electron deficicient arene substrates

The electron-withdrawing groups in substrates **31**, **33** and **35** are not as powerful as the nitro group. Because of this, the initial addition of the ester enolate to the aromatic ring apparently does not take place. The expected arylated products were not observed and the electron deficient arenes could be recovered.

General Procedure for the Arylation of Substrates for Reactivity Predictions

t-BuOK (224 mg, 2.0 mmol, 2.0 equiv) was added in one portion to a solution of the arylation substrates **7a-d** and **7f-i** (1.0 mmol, 1.0 equiv, (0.25 mmol, 1.0 equiv for **7e**)) and nitrobenzene **2** (246 mg, 2.0 mmol, 2.0 equiv) in dry DMSO (0.2 M) at room temperature. Once the base was added, the mixture was stirred in an open flask at room temperature for 30 minutes. The reaction was quenched via the addition of saturated NH₄Cl solution (5 mL). The resulting mixture was extracted with ethyl acetate (3×10 mL). The organic layers were combined, washed with brine (10 mL), dried over anhydrous Na₂SO₄, filtered and concentrated in *vacuo*. The crude products **8a-8c** were purified by column chromatography.

Analysis Data of pKa Reactivity Prediction Products

60. dimethyl((4-nitrophenyl)(phenyl)methyl)phosphonate (8a)

Yellow oil, 7% yield. ¹H NMR (600 MHz, CDCl₃) δ 8.19 (d, *J* = 9.0 Hz, 2 H), 7.70 (d, *J* = 6.0 Hz, 2H), 7.49 (d, *J* = 7.8 Hz, 2H), 7.36 (t, *J* = 7.5 Hz, 2H), 7.30 (t, *J* = 7.5 Hz, 1H), 4.54 (d, *J* = 25.2 Hz, 1H), 3.60 (dd, *J* = 36.0, 10.8 Hz, 6H); ¹³C NMR (151 MHz, CDCl₃) δ 147.2 (d, *J* = 2.5 Hz), 144.3 (d, *J* = 5.1 Hz), 135.2 (d, *J* = 5.7 Hz), 130.4 (d, *J* = 7.8 Hz, 2C), 129.5 (d, *J* = 7.9 Hz 2C), 129.2 (2C), 128.0, 123.9 (2C), 53.7 (dd, *J* = 89.1, 7.2 Hz, 2C), 50.8; HRMS (ESI): Exact mass calcd. for C₁₅H₁₇NO₅P [M+H]⁺: 322.0844. Found: 322.0844. Product purified by column chromatography (Hexanes:Ethyl Acetate = 1:1).

61. 9-(4-nitrophenyl)-9H-fluorene (8b)

Yellow solid, m.p. 123.1-124.4 °C. 26% yield. ¹H NMR (600 MHz, CDCl₃) δ 8.13 (d, *J* = 9.0 Hz, 2H), 7.83 (d, *J* = 7.8 Hz, 2H), 7.43 (t, *J* = 7.2 Hz, 2H), 7.29-7.23 (m, 6H), 5.15 (s, 1H); ¹³C NMR (151 MHz, CDCl₃) δ 149.8, 147.1, 146.6 (2C), 141.2 (2C), 129.2 (2C), 128.1 (2C), 127.8 (2C), 125.3 (2C), 124.1 (2C), 120.3 (2C), 54.0; HRMS (ESI): Exact mass calcd. for C₁₉H₁₂NO₂ [M⁻]: 286.0874. Found: 286.0866. Product purified by column chromatography (Hexanes:Ethyl Acetate = 20:1).

62. 1-nitro-4-(1-nitroethyl)benzene (8c)

Yellow oil, 86% yield. ¹H NMR (600 MHz, CDCl₃) δ 8.26 (d, *J* = 9.0 Hz, 2H), 7.65 (d, *J* = 9.0 Hz, 2H), 5.71 (q, *J* = 6.0 Hz, 1H), 1.94 (d, *J* = 7.2 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 148.6, 141.7, 128.6 (2C), 124.2 (2C), 85.1, 19.5; HRMS (ESI): Exact mass calcd. for C₈H₇N₂O₄ [M-H]⁻: 195.0411. Found: 195.0423. Product purified by column chromatography (Hexanes:Ethyl Acetate = 10:1).

General Two-step Preparation of All Carbon Quaternary Center Containing Compounds

Step 1: *t*-BuOK (1.2 g, 10.9 mmol, 1.09 equiv) was suspended in 8 mL of dry DMF under an argon atmosphere. At 0 °C methyl phenylacetate (1.5 g, 10 mmol, 1.0 equiv) was added followed by benzyl bromide (1.71 g, 10 mmol, 1.0 equiv) after 5 minutes. The reaction was warmed to room temperature and stirred for 1 h. Water (12 mL) was added and the solution was extracted with DCM (2 ×12 mL). The organic layers were combined and washed with saturated NH₄CL (12 mL) and water (12 mL). The combined organic layers were died over MgSO₄, filtered and concentrated in *vacuo*. The crude product was purified by column chromatography (Hexanes:Ethyl Acetate = 10:1)³ to give methyl 2,3-diphenylpropanoate **9** (941 mg, 39% yield) as a colorless oil.

Step 2: *t*-BuOK (224 mg, 2.0 mmol, 2.0 equiv) was added in one portion to the solution of **9** (240 mg, 1.0 mmol, 1.0 equiv) and 2-nitro benzonitrile **2a** (296 mg, 2.0 mmol, 2.0 equiv) in dry DMSO (0.2 M) at room temperature. Once the base was added the mixture was stirred in an open flask at room temperature for 30 minutes, followed by the addition of saturated NH₄Cl solution (5 mL). The resulting mixture was extracted with ethyl acetate (3×10 mL). The organic layers were combined, washed with brine (10 mL), dried over anhydrous Na₂SO₄, filtered and concentrated in *vacuo*. The crude product was purified by column chromatography (Hexanes:Ethyl Acetate = 10:1) to give methyl 2-(3-cyano-4-nitrophenyl)-2,3-diphenylpropanoate **10** (67.4 mg, 18% yield) as a yellow oil.

Analysis Data for All Carbon Quaternary Center Containing Compounds Prepared in Two Steps

63. methyl 2,3-diphenylpropanoate (9)

Colorless oil, 39% yield. ¹H NMR (600 MHz, CDCl₃) δ 7.44-7.39 (m, 4H), 7.36-7.32 (m, 3H), 7.29-7.27 (m, 1H), 7.24-7.23 (m, 2H), 3.98 (dd, J = 8.8, 6.7 Hz, 1H), 3.67 (s, 3H), 3.55 (dd, J = 13.7, 8.8 Hz, 1H), 3.15 (dd, J = 13.8, 6.7 Hz, 1H); ¹³C NMR (151 MHz, CDCl₃) δ 173.7, 139.0, 138.6, 128.9 (2C), 128.6 (2C), 128.3 (2C), 127.9 (2C), 127.4, 126.3, 53.6, 51.9, 39.8; These shifts are consistant with literature reported values. HRMS (ESI): Exact mass calcd. for C₁₆H₁₇O₂ [M+H]⁺: 241.1223. Found: 241.1224.

64. methyl 2-(3-cyano-4-nitrophenyl)-2,3-diphenylpropanoate (10)

Yellow oil, 18% yield. ¹H NMR (600 MHz, CDCl₃) δ 8.04 (d, *J* = 8.8 Hz, 1H), 7.43-7.39 (m, 3H), 7.36 (d, *J* = 2.1 Hz, 1H), 7.34 (dd, *J* = 7.6, 2.1 Hz, 2H), 7.28 (dd, *J* = 8.8, 2.2 Hz, 1H), 7.21 (t, *J* = 7.5 Hz, 1H), 7.14 (t, *J* = 7.6, 2H), 6.64 (d, *J* = 7.2 Hz, 2H), 4.23 (d, *J* = 13.0 Hz, 1H), 3.78 (s, 3H), 2.28 (d, *J* = 13.0 Hz, 1H) ; ¹³C NMR (151 MHz, CDCl₃) δ 172.4, 150.4, 146.6, 140.89, 137.1, 135.5, 135.2, 130.3 (2C), 129.1 (2C), 128.6, 128.5 (2C), 128.0 (2C), 127.6, 124.1, 115.1, 106.7, 62.0, 53.0, 44.1; HRMS (ESI): Exact mass calcd. for C₂₃H₁₉N₂O₄ [M+H]⁺: 387.1339. Found: 387.1338.

General One-pot Preparation of all Carbon Quaternary Center Containing Compounds

t-BuOK (448 mg, 4.0 mmol, 2.0 equiv) was added in one portion to a solution of methyl phenylacetate 1 (300 mg, 2.0 mmol) and nitrobenzene 2 (492 mg, 4.0 mmol, 2.0 equiv) in dry DMSO (10 mL) at room temperature. Once the base was added completely, the mixture was stirred

in an open flask at room temperature for 30 minutes. After 30 minutes allylic bromide (480 mg, 4.0 mmol, 2.0 equiv) was added. The reaction mixture was stirred under N₂ at room temperature for 12 hours. The reaction was quenched via the addition of saturated NH₄Cl solution (10 mL). The resulting mixture was extracted with ethyl acetate (3×20 mL). The organic layers were combined and washed with brine (20 mL), dried over anhydrous Na₂SO₄, filtered and concentrated in *vacuo*. The crude product was purified by column chromatography (Hexanes:Ethyl Acetate = 10:1) to give methyl 2-(4-nitrophenyl)-2-phenylpent-4-enoate **12a** (275.8 mg, 44% yield) as a yellow oil.

Analysis Data of all Carbon Quaternary Center Containing Compounds Prepared via One-pot Method

65. methyl 2-(4-nitrophenyl)-2-phenylpent-4-enoate (12a)

Yellow oil. 44% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.16-8.10 (m, 2H), 7.42-7.25 (m, 7H), 5.64-5.51 (m, 1H), 5.00-4.89 (m, 2H), 3.73 (s, 3H), 3.29 (dd, J = 14.0, 6.8 Hz, 1H), 3.10 (dd, J = 14.0, 7.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 173.3, 150.0, 146.5, 141.2, 133.0, 130.2, 128.44, 128.37, 127.6, 122.8, 119.3, 60.4, 52.7, 42.5. HRMS (ESI): Exact mass calcd. for C₁₈H₁₈NO₄ [M+H]⁺: 312.1230. Found: 312.1232.

66. methyl 2-(2-bromo-4-nitrophenyl)-2-phenylpent-4-enoate (12b)

Yellow oil. 48% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.44 (d, J = 2.0 Hz, 1H), 8.05 (dd, J = 8.8, 2.4 Hz, 1H), 7.54-7.50 (m, 2H), 7.40-7.29 (m, 3H), 7.27 (d, J = 8.8 Hz, 1H), 5.60-5.47 (m, 1H), 5.05-4.90 (m, 2H), 3.70 (s, 3H), 3.52 (dd, J = 15.2, 6.4 Hz, 1H), 3.36 (dd, J = 15.2, 6.8 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 172.6, 149.2, 146.7, 138.9, 132.8, 132.1, 129.3, 129.0, 128.4, 127.8, 124.8, 121.2, 119.0, 60.9, 52.7, 39.2. HRMS (ESI): Exact mass calcd. for C₁₈H₁₇BrNO₄ [M+H]⁺: 390.0335. Found: 390.0327.

Yellow oil. 61% yield. ¹H NMR (300 MHz, CDCl₃) δ 7.91-7.86 (m, 2H), 7.50-7.45 (m, 2H), 7.42-7.31 (m, 3H), 7.19-7.11 (m, 1H), 5.69-5.57 (m, 1H), 4.98-4.89 (m, 2H), 3.72 (s, 3H), 3.31-3.25 (m, 2H); ¹³C NMR (755 MHz, CDCl₃) δ 172.5, 160.2 (d, J = 250.4 Hz), 147.6 (d, J = 9.2 Hz), 138.39, 138.36 (d, J = 21.2 Hz), 133.0, 131.1 (d, J = 4.4 Hz), 128.5 (d, J = 3.2 Hz), 127.9, 121.1, 119.0, 118.4 (d, J = 3.3 Hz), 111.5 (d, J = 28.4 Hz), 57.4 (d, J = 2.2 Hz), 52.7, 39.9 (d, J = 2.2 Hz). HRMS (ESI): Exact mass calcd. for C₁₈H₁₇FNO₄ [M+H]⁺: 330.1136. Found: 330.1126.

68. methyl 2-(3-cyano-4-nitrophenyl)-2-phenylpent-4-enoate (12d)

Yellow oil. 46% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.21 (d, *J* = 8.8 Hz, 1H), 7.72 (d, *J* = 2.0 Hz, 1H), 7.62 (dd, *J* = 8.8, 1.6 Hz, 1H), 7.43-7.34 (m, 3H), 7.28-7.23 (m, 2H), 5.62-5.52 (m, 1H), 5.04 (d, *J* = 10.0 Hz, 1H), 4.93 (dd, *J* = 16.8, 1.2 Hz, 1H), 3.75 (s, 3H), 3.37 (dd, *J* = 14.8, 7.2 Hz, 1H), 3.01 (dd, *J* = 14.0, 7.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 172.5, 150.6, 146.7, 140.2, 136.5, 134.6, 132.2, 128.9, 128.2, 128.0, 124.6, 120.3, 115.1, 107.2, 60.2, 53.0, 42.4. HRMS (ESI): Exact mass calcd. for C₁₉H₁₇N₂O4 [M+H]⁺: 337.1183. Found: 337.1174.

69. methyl 2-(3-cyano-4-nitrophenyl)-2-(4-methoxyphenyl)pent-4-enoate (12e)

Yellow oil. 48% yield. ¹H NMR (500 MHz, CDCl₃) δ 8.18 (d, *J* = 8.5 Hz, 1H), 7.69 (d, *J* = 2.0 Hz, 1H), 7.61 (dd, *J* = 9.0, 2.0 Hz, 1H), 7.21-7.13 (m, 2H), 6.90-6.82 (m, 2H), 5.60-5.50 (m, 1H), 4.99 (dd, *J* = 10.5, 1.0 Hz, 1H), 4.88 (dd, *J* = 17.0, 1.5 Hz, 1H), 3.77 (s, 3H), 3.71 (s, 3H), 3.33 (dd, *J* = 13.5, 6.5 Hz, 1H), 2.95 (dd, *J* = 14.0, 7.5 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 172.5, 159.0, 150.8, 146.3, 136.2, 134.4, 132.2, 131.8, 129.0, 124.4, 119.9, 115.0, 114.0, 106.8, 59.3, 55.0, 52.7, 42.2. HRMS (ESI): Exact mass calcd. for C₂₀H₁₉N₂O₅ [M+H]⁺: 367.1288. Found: 367.1296.

70. 2-(4-nitrophenyl)-2-phenylpent-4-enenitrile (12f)

Yellow oil. 61% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.21 (dd, J = 8.8, 2.8 Hz, 2H), 7.61-7.55 (m, 2H), 7.44-7.32 (m, 5H), 5.75-5.64 (m, 1H), 5.25-5.18 (m, 2H), 3.22 (dd, J = 14.0, 6.8 Hz, 1H), 3.13 (dd, J = 14.0, 7.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 147.4, 146.7, 138.2, 130.7, 129.2, 128.6, 128.1, 126.9, 124.0, 121.3, 120.8, 51.6, 43.6. HRMS (ESI): Exact mass calcd. for C₁₇H₁₅N₂O₂ [M+H]⁺: 279.1128. Found: 279.1125.

71. 2-(2-fluoro-4-nitrophenyl)-2-(4-methoxyphenyl)pent-4-enenitrile (12g)

Yellow oil. 54% yield. ¹H NMR (500 MHz, CDCl₃) δ 7.99-7.94 (m, 1H), 7.76 (dd, J = 11.0, 2.5 Hz, 1H), 7.67 (t, J = 9.0 Hz, 1H), 7.18-7.12 (m, 2H), 6.80-6.74 (m, 2H), 5.64-5.55 (m, 1H), 5.17-5.04 (m, 2H), 3.67 (s, 3H), 3.19 (dd, J = 14.0, 9.0 Hz, 1H), 3.08 (dd, J = 14.0, 6.5 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 159.39 (d, J = 254.6 Hz), 159.38, 148.5 (d, J = 9.0 Hz), 134.1 (d, J = 5.4 Hz), 130.6, 129.3 (d, J = 3.6 Hz), 128.8, 127.7, 121.0, 119.8, 119.2 (d, J = 3.6 Hz), 114.2, 112.4 (d, J = 27.0 Hz), 55.1, 48.3 (d, J = 1.8 Hz), 41.6 (d, J = 2.8 Hz). HRMS (ESI): Exact mass calcd. for C₁₈H₁₆FN₂O₃ [M+H]⁺: 327.1139. Found: 327.1136.

72. 2-(2-bromo-4-nitrophenyl)-2-(4-fluorophenyl)pent-4-enenitrile (12h)

Yellow oil. 35% yield. ¹H NMR (300 MHz, CDCl₃) δ 8.45 (d, J = 2.4 Hz, 1H), 8.30 (dd, J = 8.7, 2.4 Hz, 1H), 7.96 (d, J = 8.7 Hz, 1H), 7.28-7.16 (m, 2H), 7.09-7.00 (m, 2H), 5.75-5.61 (m, 1H), 5.25-5.16 (m, 2H), 3.46 (dd, J = 13.5, 7.2 Hz, 1H), 3.11 (dd, J = 13.5, 6.9 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 162.2 (d, J = 247.7 Hz), 147.9, 143.6, 133.2 (d, J = 3.8 Hz), 130.6, 130.2 (d, J = 15.8

Hz), 128.9 (d, J = 8.7 Hz), 124.5, 122.2, 121.6, 119.0, 116.0, 115.7, 51.4, 43.7. HRMS (ESI): Exact mass calcd. for C₁₇H₁₃BrFN₂O₂ [M+H]⁺: 375.0139. Found: 375.0156.

73. 2-(2-bromo-4-nitrophenyl)-2-(4-bromophenyl)pent-4-enenitrile (12i)

Yellow oil. 37% yield. ¹H NMR (300 MHz, CDCl₃) δ 8.44 (d, J = 2.1 Hz, 1H), 8.30 (dd, J = 8.4, 2.4 Hz, 1H), 7.95 (d, J = 9.0 Hz, 1H), 7.51-7.44 (m, 2H), 7.14-7.05 (m, 2H), 5.77-5.60 (m, 1H), 5.25-5.17 (m, 2H), 3.44 (dd, J = 13.5, 7.5 Hz, 1H), 3.10 (dd, J = 13.5, 6.9 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 147.8, 143.2, 136.4, 131.9, 130.5, 130.1, 130.0, 128.7, 124.5, 122.3, 122.2, 121.7, 118.6, 51.5, 43.6. HRMS (ESI): Exact mass calcd. for C₁₇H₁₂Br₂N₂NaO₂ [M+H]⁺: 456.9158. Found: 456.9171.

74. 2-(2-bromo-4-nitrophenyl)-2-(4-methoxyphenyl)-4-methylpent-4-enenitrile (12j)

Yellow oil. 46% yield. ¹H NMR (500 MHz, CDCl₃) δ 8.36 (d, J = 2.5 Hz, 1H), 8.19 (dd, J = 8.5, 2.5 Hz, 1H), 7.92 (d, J = 9.0 Hz, 1H), 7.05 (dd, J = 6.5, 2.0 Hz, 2H), 6.79 (dd, J = 6.5, 2.0 Hz, 2H), 4.87 (t, J = 1.5 Hz, 1H), 4.75 (s, 1H), 3.74 (s, 3H), 3.46 (d, J = 14.0 Hz, 1H), 3.03 (d, J = 13.5 Hz, 1H), 1.47 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 159.4, 147.7, 144.3, 138.5, 130.70, 130.67, 129.8, 128.4, 124.1, 122.0, 120.3, 118.0, 114.3, 55.3, 51.1, 45.2, 23.6. HRMS (ESI): Exact mass calcd. for C₁₉H₁₈BrN₂O₃ [M+H]⁺: 401.0495. Found: 401.0491.

75. methyl 2-(2-bromo-4-nitrophenyl)-4-methyl-2-phenylpent-4-enoate (12k)

Yellow oil. 38% yield. ¹H NMR (500 MHz, CDCl₃) δ 8.40 (d, J = 2.5 Hz, 1H), 8.13 (dd, J = 9.0, 2.5 Hz, 1H), 7.66 (d, J = 8.5 Hz, 1H), 7.58-7.53 (m, 2H), 7.32-7.26 (m, 3H), 4.71 (t, J = 1.5 Hz, 1H), 4.48 (s, 1H), 3.69 (s, 3H), 3.44 (d, J = 14.0 Hz, 1H), 3.38 (d, J = 14.5 Hz, 1H), 1.43 (d, J = 5.5 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 172.2, 149.4, 146.6, 140.8, 139.6, 131.5, 129.6, 129.0,

128.1, 127.5, 125.2, 121.2, 116.3, 61.1, 52.6, 44.1, 24.2. HRMS (ESI): Exact mass calcd. for C₁₉H₁₉BrNO₄ [M+H]⁺: 404.0492. Found: 404.0489.

76. methyl (E)-2-(2-bromo-4-nitrophenyl)-2-phenylhex-4-enoate (12l)

Yellow oil. 54% yield. ¹H NMR (300 MHz, CDCl₃) δ 8.44 (d, J = 2.4 Hz, 1H), 8.05 (dd, J = 9.0, 2.4 Hz, 1H), 7.54-7.48 (m, 2H), 7.40-7.26 (m, 4H), 5.45-5.31 (m, 1H), 5.26-5.16 (m, 1H), 3.69 (s, 3H), 3.45-3.36 (m, 1H), 3.35-3.23 (m, 1H), 1.47 (dd, J = 6.3, 1.2 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 172.7, 149.5, 146.8, 139.2, 132.1, 129.8, 129.3, 129.0, 128.3, 127.7, 125.1, 124.9, 121.1, 61.2, 52.7, 38.4, 17.9. HRMS (ESI): Exact mass calcd. for C₁₉H₁₉BrNO₄ [M+H]⁺: 404.0492. Found: 404.0503.

77. methyl 2-(4-nitrophenyl)-2-phenylpent-4-ynoate (12m)

Yellow oil. 39% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.19-8.12 (m, 2H), 7.53-7.45 (m, 2H), 7.40-7.26 (m, 5H), 3.76 (s, 3H), 3.37 (dd, J = 16.8, 2.8 Hz, 1H), 3.25 (dd, J = 16.8, 2.8 Hz, 1H), 1.96 (t, J = 2.8 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 172.7, 148.8, 146.9, 140.0, 130.2, 128.4, 128.3, 127.9, 122.8, 79.9, 72.7, 59.9, 53.0, 29.0. HRMS (ESI): Exact mass calcd. for C₁₈H₁₆NO₄ [M+H]⁺: 310.1074. Found: 310.1064.

78. methyl 2-(4-nitrophenyl)-2-phenylhex-4-ynoate (12n)

Yellow oil. 49% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.05-7.98 (m, 2H), 7.39-7.31 (m, 2H), 7.28-7.15 (m, 5H), 3.62 (s, 2H), 3.20 (dd, J = 16.8, 2.0 Hz, 1H), 3.07 (dd, J = 16.0, 2.0 Hz, 1H), 1.52 (t, J = 2.0 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 172.8, 149.2, 146.6, 140.4, 130.1, 128.14, 128.12, 127.5, 122.4, 79.9, 74.5, 60.1, 52.7, 29.1, 3.2. HRMS (ESI): Exact mass calcd. for C₁₉H₁₈NO₄ [M+H]⁺: 324.1230. Found: 324.1240.

79. methyl 2-(2-fluoro-4-nitrophenyl)-2-(4-methoxyphenyl)hex-4-ynoate (120)

Yellow oil. 36% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.96-7.87 (m, 2H), 7.46 (d, J = 8.8 Hz, 2H), 7.12 (t, J = 8.0 Hz, 1H), 6.93 (d, J = 8.8 Hz, 2H), 3.79 (s, 3H), 3.60 (s, 3H), 3.45 (dd, J = 16.8, 2.0 Hz, 1H), 3.16 (dd, J = 17.6, 2.8 Hz, 1H), 1.55 (t, J = 2.4 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 172.5, 159.1 (d, J = 32.0 Hz), 147.7, 138.4 (d, J = 12.4 Hz), 132.1 (d, J = 4.3 Hz), 130.3, 129.8, 129.1, 118.0 (d, J = 3.6 Hz), 113.9, 111.3 (d, J = 28.4 Hz), 80.0, 74.5, 56.4 (d, J = 1.4 Hz), 55.3, 52.9, 26.2 (d, J = 2.2 Hz), 3.3. HRMS (ESI): Exact mass calcd. for C₂₀H₁₉FNO₅ [M+H]⁺: 372.1242. Found: 372.1237.

80. methyl 2-(4-chlorophenyl)-2-(2-fluoro-4-nitrophenyl)hex-4-ynoate (12p)

Yellow oil. 57% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.98-7.89 (m, 2H), 7.49 (d, J = 8.8 Hz, 2H), 7.37 (d, J = 8.4 Hz, 2H), 7.15-7.06 (m, 1H), 3.73 (s, 3H), 3.44 (dd, J = 16.8, 2.0 Hz, 1H), 3.16 (dd, J = 17.6, 2.0 Hz, 1H), 1.55 (t, J = 2.4 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 171.9, 160.2 (d, J = 251.0 Hz), 148.0 (d, J = 8.7 Hz), 137.6 (d, J = 12.4 Hz), 136.0, 134.3, 131.9 (d, J = 3.6 Hz), 130.1, 128.7, 118.2 (d, J = 3.7 Hz), 111.5 (d, J = 28.3 Hz), 80.4, 74.0, 56.7 (d, J = 1.4 Hz), 53.1, 26.3 (d, J = 2.2 Hz), 3.3. HRMS (ESI): Exact mass calcd. for C₁₇H₁₆ClFNO₄ [M+H]⁺: 376.0746. Found: 376.0727.

81. methyl 2-(2-chlorophenyl)-2-(2-fluoro-4-nitrophenyl)hex-4-ynoate (12q)

Yellow oil. 57% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.97 (dd, J = 8.8, 2.4 Hz, 1H), 7.87 (dd, J = 10.8, 2.4 Hz, 1H), 7.68 (t, J = 8.8 Hz, 1H), 7.59 (d, J = 7.2 Hz, 1H), 7.40-7.27 (m, 3H), 3.76 (s,
3H), 3.56-3.40 (m, 2H), 1.60 (t, J = 2.0 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 171.1, 160.5 (d, J = 253.8 Hz), 148.0 (d, J = 9.5 Hz), 137.0, 134.3 (d, J = 10.2 Hz), 133.7, 132.0 (d, J = 3.6 Hz), 131.2, 130.2 (d, J = 2.2 Hz), 129.2, 126.8, 118.2 (d, J = 3.7 Hz), 112.0 (d, J = 29.1 Hz), 80.4, 74.1, 58.4 (d, J = 2.9 Hz), 53.1, 27.6 (d, J = 4.4 Hz), 3.4. HRMS (ESI): Exact mass calcd. for C₁₉H₁₆ClFNO₄ [M+H]⁺: 376.0746. Found: 376.0738.

82. 2-(2-bromo-4-nitrophenyl)-2-(4-bromophenyl)hex-4-ynenitrile (12r)

Yellow oil. 53% yield. ¹H NMR (300 MHz, CDCl₃) δ 8.45 (d, J = 2.4 Hz, 1H), 8.31 (dd, J = 8.7, 2.4 Hz, 1H), 8.03 (d, J = 8.7 Hz, 1H), 7.52-7.43 (m, 2H), 7.14-7.06 (m, 2H), 3.40-3.20 (m, 2H), 1.74 (t, J = 2.4 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 148.0, 142.2, 136.5, 132.0, 130.42, 130.36, 128.4, 124.8, 122.6, 122.1, 118.5, 82.7, 72.0, 51.8, 32.2, 3.4. HRMS (ESI): Exact mass calcd. for C₁₈H₁₃Br₂N₂O₂ [M+H]⁺: 446.9338. Found: 446.9332.

83. 2-(2-bromo-4-nitrophenyl)-2-(4-methoxyphenyl)hex-4-ynenitrile (12s)

Pale yellow solid, m.p. 127-129 °C. 66% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.47(d, J = 2.4 Hz, 1H), 8.31 (dd, J = 8.8, 2.4 Hz, 1H), 8.02 (d, J = 8.8 Hz, 1H), 7.16-7.09 (m, 2H), 6.90-6.82 (m, 2H), 3.81 (s, 3H), 3.37-3.20 (m, 2H),1.75 (t, J = 2.4 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 159.5, 147.8, 143.1, 130.5, 130.4, 129.3, 128.0, 124.8, 122.0, 119.2, 114.3, 82.2, 72.5, 55.3, 51.8, 32.2, 3.5. HRMS (ESI): Exact mass calcd. for C₁₉H₁₅BrN₂NaO₃ [M+Na]⁺: 421.0158. Found: 421.0150.

84. methyl 2-(2-fluoro-4-nitrophenyl)-2,3-diphenylpropanoate (12t)

Yellow oil. 66% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.82 (dd, J = 8.8, 2.0 Hz, 1H), 7.71 (dd, J = 11.2, 2.4 Hz, 1H), 7.54-7.47 (m, 2H), 7.40-7.31 (m, 3H), 7.19 (t, J = 7.2 Hz, 1H), 7.14-7.00 (m, 3H), 6.80 (d, J = 6.4 Hz, 2H), 4.19 (d, J = 13.2 Hz, 1H), 3.69 (s, 3H), 3.47 (d, J = 14.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 172.2, 160.4 (d, J = 251.7 Hz), 147.5 (d, J = 8.7 Hz), 140.1, 137.9 (d, J = 11.6 Hz), 136.1, 131.7 (d, J = 4.3 Hz), 130.3, 128.4, 128.3, 127.9, 127.8, 126.8, 118.1 (d, J = 3.6 Hz), 111.4 (d, J = 29.1 Hz), 59.1 (d, J = 2.2 Hz), 52.6, 42.1. HRMS (ESI): Exact mass calcd. for C₂₂H₁₈FnaO₄ [M+Na]⁺: 402.1112. Found: 402.1122.

85. methyl 2-(4-nitrophenyl)-2,3-diphenylpropanoate (12u)

Yellow oil. 52% yield. ¹H NMR (300 MHz, CDCl₃) δ 8.02-7.95 (m, 2H), 7.38-7.22 (m, 6H), 7.20-7.13 (m, 2H), 7.12-7.00 (m, 2H), 6.70-6.61 (m, 2H), 4.02 (d, *J* = 13.2 Hz, 1H), 3.71 (s, 3H), 3.47 (d, *J* = 12.6 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 172.8, 150.0, 146.4, 141.8, 136.2, 130.6, 130.4, 128.4, 128.3, 127.8, 127.6, 126.7, 122.3, 62.0, 52.4, 44.1. HRMS (ESI): Exact mass calcd. for C₂₂H₁₉NNaO₄ [M+Na]⁺: 384.1206. Found: 384.1201.

86. 2-(4-nitrophenyl)-2,3-diphenylpropanenitrile (12v)

Yellow oil. 54% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.20-8.12 (m, 2H), 7.49-7.42 (m, 2H), 7.41-7.32 (m, 5H), 7.25-7.13 (m, 3H), 6.91-6.86 (m, 2H), 3.75 (d, *J* = 13.2 Hz, 1H), 3.64 (d, *J* = 13.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 147.4, 147.0, 138.7, 133.6, 130.4, 129.1, 128.7, 128.5, 128.2, 127.7, 127.3, 123.8, 120.8, 52.9, 45.1. HRMS (ESI): Exact mass calcd. for C₂₁H₁₇N₂O₂ [M+H]⁺: 329.1285. Found: 329.1287.

87. methyl 2-(2-fluoro-4-nitrophenyl)-2-phenylpropanoate (12w)

Yellow oil. 46% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.91 (dd, J = 10.4, 2.4 Hz, 2H), 7.84 (dd, J = 8.8, 2.0 Hz, 2H), 6.89 (t, J = 8.0 Hz, 1H), 3.75 (s, 3H), 1.99 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 173.4, 160.0 (d, J = 251.0 Hz), 147.5 (d, J = 8.8 Hz), 140.9 (d, J = 12.4 Hz), 139.2, 129.9 (d, J = 4.4

Hz), 128.7, 128.0, 127.6, 118.7 (d, J = 3.6 Hz), 111.4 (d, J = 28.4 Hz), 53.5 (d, J = 1.4 Hz), 52.7, 23.6 (d, J = 2.2 Hz). HRMS (ESI): Exact mass calcd. for C₁₆H₁₅FNO₄ [M+H]⁺: 304.0980. Found: 304.0976.

88. 1,3-diallyl-3-(4-nitrophenyl)indolin-2-one (12x)

Yellow solid, m.p. 97.0-98.6 °C. 36% yield. ¹H NMR (600 MHz, CDCl₃) δ 8.16 (d, J = 8.9 Hz, 2H), 7.59 (d, J = 8.9 Hz, 2H), 7.35 (td, J = 7.7, 1.3 Hz, 1H), 7.27 (d, J = 7.4 Hz, 1H), 7.15 (t, J = 7.5 Hz, 1H), 6.93 (d, J = 7.9 Hz, 1H), 5.79 (ddt, J = 7.9 Hz, 1H), 5.39 (dddd, J = 7.9 Hz, 1H), 5.20 (m, 2H), 5.07 (dq, J = 17.1, 1.5 Hz, 1H), 4.98 (d, J = 10.9 Hz, 1H), 4.34 (m, 2H), 3.05 (m, 2H) ; ¹³C NMR (151 MHz, CDCl₃) δ 176.5, 147.2, 146.9, 143.0, 131.5, 131.2, 130.4, 128.9, 128.3 (2C), 125.3, 123.7 (2C), 122.9, 120.3, 117.9, 109.7, 56.5, 42.7, 42.4. HRMS (ESI): Exact mass calcd. for C₂₀H₁₉N₂O₃ [M+H]⁺: 335.1369. Found: 335.1365.

Experimental Procedures for the Formation of Heterocycles and Intermediates

Substituted Carbazole Synthesis

PhMgBr (0.92 M in THF solution) (3.3 mL, 3 mmol) was slowly (0.3 mL/min) added to the mixture of methyl 2-(6-nitro-[1,1'-biphenyl]-3-yl)-2-phenylacetate **3d** (348 mg, 1 mmol) and dry THF (10 mL) at 0 °C in 10 minutes. Then the mixture was stirred at 0 °C for 5 minutes followed by the slow addition of saturated NH₄Cl aqueous solution (0.5 mL). Then 50 mL water was added and the resulting mixture was extracted with ethyl acetate (3×30mL). The combined organic layers were washed with brine (50 mL), dried over anhydrous Na₂SO₄, filtered and concentrated in vacuo. The crude product was purified by column chromatography (Hexanes:Ethyl Acetate = 10:1)⁴ to give methyl 2-(9*H*-carbazol-3-yl)-2-phenylacetate **13** (155 mg, 49%) as a white solid.

Substituted Tetrahydrofuran Synthesis

Step 1: To a solution of Diisobutylaluminium hydride (4 mL, 1.5 M in toluene, 6.0 mmol) in THF (10 mL), methyl 2-(4-nitrophenyl)-2-phenylpent-4-enoate **12a** (620 mg, 2 mmol) in Et₂O (10 mL) was slowly added at 0 °C. After stirred for 12 h, the reaction mixture was carefully quenched by the

slow addition of saturated NH₄Cl aqueous solution (0.5 mL). Then 50 mL water was added and the resulting mixture was extracted with ethyl acetate (3×30 mL). The combined organic layers were washed with brine (50 mL), dried over Na₂SO₄ and concentrated under reduced pressure. The residue was purified by flash column chromatography (Hexanes:Ethyl Acetate = 10:1)⁵ to give 2-(4-nitrophenyl)-2-phenylpent-4-en-1-ol **14** (364 mg, 64%) as a colorless oil.

Step 2: A solution of I₂ (12.8 mg, 0.05 mmol) and PhSiH₃ (12.3 µL, 0.10 mmol) in CH₂Cl₂ (5 mL) was stirred for 15 ~30 min and 2-(4-nitrophenyl)-2-phenylpent-4-en-1-ol **14** (140 mg, 0.5 mmol) was then added under air. The resulting mixture was quenched with saturated aqueous Na₂CO₃ and extracted with EtOAc. The organic layer was washed with brine, dried over Na₂SO₄ and concentrated under reduced pressure. The residue was purified by flash column chromatography (Hexane:EtOAc = 10:1)⁵ to give 2-methyl-4-(4-nitrophenyl)-4-phenyltetrahydrofuran **15** (99.6 mg, 70%) as pale yellow oil (*dr* = 1:1).

Analysis Data of Heterocycles and Intermediates

89. methyl 2-(9H-carbazol-3-yl)-2-phenylacetate (13)

White solid, m.p. 165-167 °C. 49% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.00 (d, *J* = 7.6 Hz, 3H), 7.39-7.22 (m, 9H), 7.21-7.15 (m, 1H), 5.22 (s, 1H), 3.76 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 173.7, 139.8, 139.4, 138.7, 129.6, 128.6 (2C), 127.1, 126.6, 125.9, 123.5, 123.1, 120.4, 120.3, 119.4, 110.7, 110.6, 57.0, 52.3. HRMS (ESI): Exact mass calcd. for C₂₁H₁₈NO₂ [M+H]⁺: 316.1332. Found: 316.1337.

90. 2-(4-nitrophenyl)-2-phenylpent-4-en-1-ol (14)

Pale yellow oil. 64% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.17-8.10 (m, 2H), 7.40-7.20 (m, 5H), 7.18-7.11 (m, 2H), 5.48-5.32 (m, 1H), 5.13-4.98 (m, 2H), 4.17 (q, *J* = 10.8 Hz, 2H), 3.06-2.91 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 153.3, 146.3, 143.9, 133.4, 129.2, 128.5, 128.0, 127.0, 123.1, 119.0, 67.5, 52.0, 40.9. HRMS (ESI): Exact mass calcd. for C₁₇H₁₈NO₃ [M+H]⁺: 284.1281. Found: 284.1283.

Pale yellow oil. 64% yield. ¹H NMR (300 MHz, CDCl₃) δ 8.13-8.03 (m, 2H), 7.46 (dd, J = 6.9, 2.1 Hz, 1H), 7.38 (dd, J = 6.9, 2.1 Hz, 1H), 7.34-7.15 (m, 5H), 4.61-4.45 (m, 1H), 4.28-4.12 (m, 2H), 2.83-2.55 (m, 1H), 2.40-2.17 (m, 1H), 1.30 (t, J = 6.0 Hz, 3H),; ¹³C NMR (75 MHz, CDCl₃) δ 154.04, 153.95, 146.1, 146.0, 144.5, 144.2, 128.5, 128.4, 127.9, 127.8, 126.89, 126.86, 126.8, 126.6, 123.3, 123.2, 76.4, 76.0, 74.8, 74.4, 56.6, 56.4, 46.2, 46.1, 21.1, 21.0. HRMS (ESI): Exact mass calcd. for C₁₇H₁₈NO₃ [M+H]⁺: 284.1281. Found: 284.1289.

Analysis Data of Arylation Products Formed with *para*-substituted Nitroarenes

methyl 2-(2-nitro-5-(trifluoromethyl)phenyl)-2-phenylacetate (25)

Yellow oil. 18% yield. ¹H NMR (600 MHz, Chloroform-*d*) δ 8.10 (d, J = 8.4 Hz, 1H), 7.70 (dd, J = 8.5, 1.9 Hz, 1H), 7.45 – 7.38 (m, 4H), 7.29 – 7.24 (m, 2H), 5.68 (s, 1H), 3.77 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 171.25, 150.88, 135.41, 134.87, 134.59 (d, J = 33.4 Hz), 129.44, 129.04, 128.78 (q, J = 3.8 Hz), 128.52, 125.54, 125.51 (q, J = 3.8 Hz), 122.75 (d, J = 273.2 Hz), 52.89, 52.84.

methyl 2-(4-nitrophenyl)-2-phenylacetate (27)

Pale yellow oil. 47% yield. ¹H NMR (600 MHz, Chloroform-*d*) δ 8.20 – 8.15 (m, 2H), 7.52 – 7.46 (m, 2H), 7.39 – 7.34 (m, 2H), 7.34 – 7.27 (m, 3H), 5.12 (s, 1H), 3.78 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 171.84, 147.18, 145.84, 137.22, 129.63 (2C), 129.04 (2C), 128.45 (2C), 127.95, 123.77 (2C), 56.66, 52.70.

methyl 2-(5-cyano-2-nitrophenyl)-2-phenylacetate (**29a**) and methyl 2-(3-cyanophenyl)-2-phenylacetate (**29 b**)

Yellow oil. 46% yield (isolated as a mixture) ¹H NMR (600 MHz, Chloroform-d) δ 8.09 (d, J = 8.4 Hz, 1H), 7.73 (dd, J = 8.4, 1.8 Hz, 1H), 7.64 – 7.58 (m, 2H), 7.47 – 7.40 (m, 6H), 7.37 – 7.33 (m, 2H), 7.33 – 7.26 (m, 3H), 7.26 – 7.23 (m, 2H), 5.64 (s, 1H), 5.06 (s, 1H), 3.77 (s, 3H), 3.76 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 171.94, 171.01, 150.99, 143.89, 137.30, 135.65, 135.38, 135.01, 132.37 (2C), 131.98, 129.67 (2C), 129.49 (2C), 129.01(2C), 128.98 (2C), 128.76, 128.47 (2C), 127.87, 125.46, 118.62, 116.95, 116.79, 111.33, 56.86, 52.95, 52.79, 52.64. (**29a**)HRMS (ESI): Exact mass calcd. for C₁₆H₁₂N₂O₄Na [M+Na]⁺: 319.0689. Found: 319.0667. (**29b**)HRMS (ESI): Exact mass calcd. for C₁₆H₁₄NO₂ [M+H]⁺: 252.1019. Found: 252.2019.

¹H NMR Study of DMS in Crude Reaction Mixture

Methyl 2-phenylacetate (1) was submitted to the standard arylation conditions using 2cyanonitrobenzene (2a) as the coupling partner. The presence or absence of DMS was observed in crude ¹H NMR spectra. To make the NMR samples, 250 μ L alliquots were removed from the crude reaction mixture and combined with the internal standard maleic acid (6.1 mg, 0.0525 mmol). Crude ¹H NMR was taken on a Bruker DRX-600 spectrometer operating at 600 MHz.

Pure Standards in DMSO-d6

Crude Reaction Mixture at the Begining of the Reaction in DMSO

Crude Reaction Mixture After 30 Minutes in DMSO

Crude Reaction Mixture After 30 Minutes in DMSO Showing Arylated Product 3a

Based on peak integrations, 0.00190 mmol of DMS was present in the sample after 30 minutes of reaction time. In the same sample, 0.0136 mmol of arylated product **3a** was calculated to be present based on peak integrations. Although DMS was present, there was not a 1:1 molar ratio of DMS to product **3a**. Therefore, DMS cannot be acting as the major oxidizing agent.

DMS : Arylated Product 3a = 0.00190 mmol : 0.0136 mmol = 1 : 7 molar ratio

Crude Reaction Mixture After 30 Minutes Doped with DMS Standard in DMSO

Refrences

- 1. (a) WO2007107539A1, 2007. (b) WO2008122667A2, 2008.
- (a) C. Bourgeois, E. Werfel, F. Galla, K. Lehmkuhl, H. Torres-Gomez, D. Schepmann, B. Kogel, T. Christoph, W. Strassburger, W. Englberger, M. Soeberdt, S. Huwel, H. J. Galla and B. Wunsch, J. Med. Chem., 2014, 57, 6845-6860. (b) D. A. Campbell, J. Org. Chem., 1992, 57, 1523-1527. (c) H. Huang, W. Lu, X. Li, X. Cong, H. Ma, X. Liu, Y. Zhang, P. Che, R. Ma, H. Li, X. Shen, H. Jiang, J. Huang and J. Zhu, Bioorg. Med. Chem. Lett., 2012, 22, 958-962. (d) WO2011060397A1, 2011. (e) A. T. Soldatenkov, S. A. Soldatova, J. A. Mamyrbekova-Bekro, G. S. Gimranova, A. V. Malkova, K. B. Polyanskii, N. M. Kolyadina and V. N. Khrustalev, Chem. Heterocycl. Compd., 2012, 48, 1332-1339. (f) S. W. Wright, D. L. Hageman, A. S. Wright and L. D. McClure, Tetrahedron Lett., 1997, 38, 7345-7348.
- 3. Adam, W.; Bosio, S. G.; Turro, N. J., J. Am. Chem. Soc. 2002, 124, 8814-8815.
- H. Gao, Q. L. Xu, M. Yousufuddin, D. H. Ess and L. Kürti, *Angew. Chem. Int. Ed. Engl.*, 2014, 53, 2701-2705.
- 5. S. Fujita, M. Abe, M. Shibuya and Y. Yamamoto, Org. Lett., 2015, 17, 3822-3825.

X-Ray Diffraction Data – Compound 4g

Diffraction data were collected on a colorless plate (approximate dimensions 0.40 x 0.35 x 0.20 mm3) at room temperature (T = 23 °C) on a Bruker APEX-II CCD diffractometer with graphite-monochromated Mo K α radiation (λ = 0.71073 Å). The cell parameters for the organic complex were obtained from the leastsquares refinement of the spots (from 36 collected frames) using the APEX2 program. A hemisphere of the crystal data was collected up to a resolution of 0.75 Å, and the intensity data were processed using the APEX2 program. All calculations for structure determination were carried out using the SHELXL-2014 package. Initial atomic positions were located using Intrinsic Phasing, and the structure was refined by least-squares methods using SHELX with 6515 independent reflections and within the range of Θ = 2.20-33.13 (completeness 100%). Calculated hydrogen positions were input and refined in a riding manner along with the attached carbons. A CF₃ group demonstrated disorder and this was treated with a combination DELU, SIMU, EADP, and ISOR restraints.

Identification code kl128_a C18 H13 F3 N2 O4 Empirical formula Formula weight 378.30 Temperature 296(2) K Wavelength 0.71073 Å Monoclinic Crystal system Space group $P2_1/c$ Unit cell dimensions a = 18.290(2) Å $\alpha = 90^{\circ}$. b = 10.7507(14) Å $\beta = 98.659(2)^{\circ}$. c = 9.2330(12) Å $\gamma = 90^{\circ}$. 1794.8(4) Å³ Volume Ζ 4 1.400 Mg/m³ Density (calculated) 0.120 mm⁻¹ Absorption coefficient F(000) 776 Crystal size 0.400 x 0.350 x 0.200 mm³ Theta range for data collection 2.204 to 33.126°.

Table 1. Crystal data and structure refinement for C18 H13 F3 N2 O4.

Index ranges	-27<=h<=27, -16<=k<=16, -14<=l<=13
Reflections collected	23928
Independent reflections	6515 [R(int) = 0.0201]
Completeness to theta = 25.000°	100.0 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.746 and 0.686
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	6515 / 72 / 255
Goodness-of-fit on F ²	1.059
Final R indices [I>2sigma(I)]	R1 = 0.0696, wR2 = 0.2152
R indices (all data)	R1 = 0.1075, wR2 = 0.2452
Extinction coefficient	n/a
Largest diff. peak and hole	0.383 and -0.355 e.Å ⁻³

	х	у	Z	U(eq)
F(1)	9714(3)	6512(5)	3697(7)	150(2)
F(2)	10308(2)	5043(5)	3085(8)	160(2)
F(3)	9709(4)	6198(7)	1504(6)	169(2)
F(1A)	10068(8)	5808(14)	3772(12)	169(2)
F(2A)	10018(5)	5368(10)	1529(12)	150(2)
F(3A)	9424(3)	6837(9)	2247(15)	160(2)
O(1)	4770(1)	7435(2)	-672(2)	98(1)
O(2)	4049(1)	6620(2)	652(2)	101(1)
O(3)	7331(1)	6796(1)	5057(2)	65(1)
O(4)	7689(1)	5160(1)	6482(1)	66(1)
N(1)	4658(1)	6786(1)	338(2)	60(1)
N(2)	3965(1)	4570(3)	3082(3)	94(1)
C(1)	7170(1)	4718(1)	4057(2)	45(1)
C(2)	7831(1)	4354(2)	3324(2)	48(1)
C(3)	7832(1)	3210(2)	2618(3)	68(1)
C(4)	8427(2)	2861(2)	1941(3)	85(1)
C(5)	9023(1)	3630(2)	1958(3)	80(1)
C(6)	9027(1)	4758(2)	2641(3)	69(1)
C(7)	8438(1)	5130(2)	3332(2)	57(1)
C(8)	9673(2)	5621(4)	2651(4)	105(1)
C(9)	6517(1)	5207(1)	3002(2)	44(1)
C(10)	6599(1)	6008(2) S49	1856(2)	53(1)

Table 2. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters (Å² $x \ 10^3$) for C18 H13 F3 N2 O4. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

C(11)	5992(1)	6508(2)	981(2)	54(1)
C(12)	5292(1)	6200(1)	1248(2)	47(1)
C(13)	5186(1)	5379(2)	2368(2)	47(1)
C(14)	5808(1)	4888(2)	3234(2)	47(1)
C(15)	4481(1)	4979(2)	2700(2)	62(1)
C(16)	7395(1)	5693(2)	5246(2)	50(1)
C(17)	7895(2)	6001(3)	7723(2)	87(1)
C(18)	8042(3)	5286(4)	9030(3)	136(2)

Table 3.	Bond lengths [Å] and angles [°] for C18 H13 F3 N2 O4	
1 uoie 5.		

F(1)-C(8)	1.354(5)
F(2)-C(8)	1.325(5)
F(3)-C(8)	1.238(5)
F(1A)-C(8)	1.186(10)
F(2A)-C(8)	1.320(8)
F(3A)-C(8)	1.415(10)
O(1)-N(1)	1.206(2)
O(2)-N(1)	1.206(2)
O(3)-C(16)	1.202(2)
O(4)-C(16)	1.317(2)
O(4)-C(17)	1.464(3)
N(1)-C(12)	1.468(2)
N(2)-C(15)	1.144(3)
C(1)-C(9)	1.516(2)
C(1)-C(2)	1.523(2)
C(1)-C(16)	1.528(2)
C(1)-H(1)	0.9800
C(2)-C(7)	1.387(2)
C(2)-C(3)	1.392(2)
C(3)-C(4)	1.387(3)
C(3)-H(3)	0.9300
C(4)-C(5)	1.366(4)
C(4)-H(4)	0.9300
C(5)-C(6)	1.366(3)
C(5)-H(5)	0.9300

C(6)-C(7)	1.391(3)
C(6)-C(8)	1.502(4)
C(7)-H(7)	0.9300
C(9)-C(14)	1.389(2)
C(9)-C(10)	1.391(2)
C(10)-C(11)	1.380(2)
C(10)-H(10)	0.9300
C(11)-C(12)	1.379(2)
C(11)-H(11)	0.9300
C(12)-C(13)	1.395(2)
C(13)-C(14)	1.392(2)
C(13)-C(15)	1.436(2)
C(14)-H(14)	0.9300
C(17)-C(18)	1.422(4)
C(17)-H(17A)	0.9700
C(17)-H(17B)	0.9700
C(18)-H(18A)	0.9600
C(18)-H(18B)	0.9600
C(18)-H(18C)	0.9600
C(16)-O(4)-C(17)	115.66(16)
O(1)-N(1)-O(2)	122.82(18)
O(1)-N(1)-C(12)	118.62(17)
O(2)-N(1)-C(12)	118.53(17)
C(9)-C(1)-C(2)	113.86(13)
C(9)-C(1)-C(16)	108.94(13)
C(2)-C(1)-C(16)	110.44(12)
C(9)-C(1)-H(1)	107.8

C(2)-C(1)-H(1)	107.8
C(16)-C(1)-H(1)	107.8
C(7)-C(2)-C(3)	118.46(17)
C(7)-C(2)-C(1)	122.09(14)
C(3)-C(2)-C(1)	119.45(16)
C(4)-C(3)-C(2)	120.4(2)
C(4)-C(3)-H(3)	119.8
C(2)-C(3)-H(3)	119.8
C(5)-C(4)-C(3)	120.7(2)
C(5)-C(4)-H(4)	119.6
C(3)-C(4)-H(4)	119.6
C(4)-C(5)-C(6)	119.4(2)
C(4)-C(5)-H(5)	120.3
C(6)-C(5)-H(5)	120.3
C(5)-C(6)-C(7)	121.1(2)
C(5)-C(6)-C(8)	120.1(2)
C(7)-C(6)-C(8)	118.9(2)
C(2)-C(7)-C(6)	119.93(18)
C(2)-C(7)-H(7)	120.0
C(6)-C(7)-H(7)	120.0
F(1A)-C(8)-F(2A)	114.8(8)
F(3)-C(8)-F(2)	109.6(4)
F(3)-C(8)-F(1)	104.6(5)
F(2)-C(8)-F(1)	99.5(4)
F(1A)-C(8)-F(3A)	101.8(8)
F(2A)-C(8)-F(3A)	99.0(7)
F(1A)-C(8)-C(6)	119.0(5)

F(3)-C(8)-C(6)	116.6(4)
F(2A)-C(8)-C(6)	109.6(4)
F(2)-C(8)-C(6)	111.4(4)
F(1)-C(8)-C(6)	113.6(3)
F(3A)-C(8)-C(6)	110.3(3)
C(14)-C(9)-C(10)	118.72(15)
C(14)-C(9)-C(1)	118.62(14)
C(10)-C(9)-C(1)	122.59(14)
C(11)-C(10)-C(9)	121.10(15)
C(11)-C(10)-H(10)	119.5
C(9)-C(10)-H(10)	119.5
C(12)-C(11)-C(10)	119.27(15)
C(12)-C(11)-H(11)	120.4
C(10)-C(11)-H(11)	120.4
C(11)-C(12)-C(13)	121.40(15)
C(11)-C(12)-N(1)	117.95(15)
C(13)-C(12)-N(1)	120.63(15)
C(14)-C(13)-C(12)	118.22(14)
C(14)-C(13)-C(15)	116.47(15)
C(12)-C(13)-C(15)	125.31(16)
C(9)-C(14)-C(13)	121.27(15)
C(9)-C(14)-H(14)	119.4
C(13)-C(14)-H(14)	119.4
N(2)-C(15)-C(13)	172.0(2)
O(3)-C(16)-O(4)	124.92(16)
O(3)-C(16)-C(1)	124.26(15)
O(4)-C(16)-C(1)	110.79(14)

C(18)-C(17)-O(4)	108.9(2)
C(18)-C(17)-H(17A)	109.9
O(4)-C(17)-H(17A)	109.9
C(18)-C(17)-H(17B)	109.9
O(4)-C(17)-H(17B)	109.9
H(17A)-C(17)-H(17B)	108.3
C(17)-C(18)-H(18A)	109.5
C(17)-C(18)-H(18B)	109.5
H(18A)-C(18)-H(18B)	109.5
C(17)-C(18)-H(18C)	109.5
H(18A)-C(18)-H(18C)	109.5
H(18B)-C(18)-H(18C)	109.5

Symmetry transformations used to generate equivalent atoms:

	U^{11}	U ²²	U ³³	U ²³	U ¹³	U ¹²
F(1)	109(2)	160(3)	195(4)	-63(3)	70(3)	-67(2)
F(2)	55(1)	189(3)	232(4)	-18(3)	14(2)	-14(2)
F(3)	174(4)	192(4)	141(3)	38(3)	25(3)	-84(3)
F(1A)	174(4)	192(4)	141(3)	38(3)	25(3)	-84(3)
F(2A)	109(2)	160(3)	195(4)	-63(3)	70(3)	-67(2)
F(3A)	55(1)	189(3)	232(4)	-18(3)	14(2)	-14(2)
O (1)	93(1)	95(1)	100(1)	45(1)	-4(1)	10(1)
O(2)	56(1)	121(2)	121(2)	29(1)	-1(1)	13(1)
O(3)	79(1)	53(1)	64(1)	-9(1)	13(1)	0(1)
O(4)	71(1)	74(1)	50(1)	-5(1)	-3(1)	14(1)
N(1)	62(1)	49(1)	66(1)	-3(1)	-4(1)	4(1)
N(2)	57(1)	125(2)	102(2)	12(1)	18(1)	-22(1)
C(1)	45(1)	44(1)	48(1)	1(1)	7(1)	-3(1)
C(2)	48(1)	44(1)	51(1)	-1(1)	5(1)	3(1)
C(3)	72(1)	49(1)	82(1)	-12(1)	13(1)	1(1)
C(4)	97(2)	60(1)	100(2)	-20(1)	26(1)	18(1)
C(5)	69(1)	86(2)	88(2)	-6(1)	22(1)	28(1)
C(6)	50(1)	80(1)	79(1)	-2(1)	14(1)	4(1)
C(7)	49(1)	56(1)	66(1)	-9(1)	11(1)	-3(1)
C(8)	58(1)	150(3)	114(2)	-10(2)	31(2)	-8(2)
C(9)	45(1)	42(1)	46(1)	-1(1)	8(1)	-5(1)
C(10)	48(1)	56(1)	56(1)	⁸⁽¹⁾ S 56	12(1)	-7(1)

Table 4. Anisotropic displacement parameters (Å²x 10³) C18 H13 F3 N2 O4. The anisotropic displacement factor exponent takes the form: $-2\pi^2$ [h² a^{*2}U¹¹ + ... + 2 h k a^{*} b^{*} U¹²]

C(11)	59(1)	50(1)	54(1)	10(1)	9(1)	-5(1)
C(12)	51(1)	41(1)	48(1)	-4(1)	2(1)	-1(1)
C(13)	44(1)	49(1)	48(1)	-7(1)	8(1)	-8(1)
C(14)	47(1)	48(1)	47(1)	2(1)	8(1)	-10(1)
C(15)	47(1)	76(1)	64(1)	1(1)	8(1)	-10(1)
C(16)	44(1)	56(1)	50(1)	-4(1)	9(1)	2(1)
C(17)	96(2)	102(2)	60(1)	-21(1)	-7(1)	10(1)
C(18)	191(4)	151(3)	58(2)	-8(2)	-11(2)	50(3)

Table 5.	Hydrogen coordinates ($x \ 10^4$) and isotropic	displacement parameters (Å 2x 10 3)
for C18 H	I13 F3 N2 O4.	

	x	У	Z	U(eq)
H(1)	7006	3974	4532	55
H(3)	7430	2677	2601	81
H(4)	8420	2096	1469	102
H(5)	9423	3387	1510	96
H(7)	8451	5898	3799	68
H(10)	7072	6211	1675	63
H(11)	6053	7046	220	65
H(14)	5747	4335	3981	57
H(17A)	8331	6474	7586	105
H(17B)	7495	6581	7791	105
H(18A)	7604	4840	9174	204
H(18B)	8188	5829	9848	204
H(18C)	8433	4706	8949	204

X-Ray Diffraction Data – Compound 12s

Table 1 Crystal data an	d structure refinement for lft-1-19(compound 12s).			
Identification code	lft-1-19(compound 12s)			
Empirical formula	C19H15BrN2O3			
Formula weight	399.24			
Temperature/K	298.15			
Crystal system	monoclinic			
Space group	P21/c			
a/Å	10.499(3)			
b/Å	20.581(6)			
c/Å	8.367(2)			
$\alpha/^{\circ}$	90			
β/°	108.054(3)			
γ/°	90			
Volume/Å3	1718.9(8)			
Ζ	4			
pcalcg/cm3	1.543			
µ/mm-1	2.412			
F(000)	808.0			
Crystal size/mm3	$0.15\times0.1\times0.08$			
Radiation	MoK α ($\lambda = 0.710$)			
2Θ range for data colle	ction/ °3.954 to 49.98			
Index ranges	$-12 \le h \le 12, -24 \le k \le 24, -9 \le l \le 9$			
Reflections collected	15229			
Independent reflections 3039 [Rint = 0.0709, Rsigma = 0.0592]				
Data/restraints/parameters 3039/0/228				
Goodness-of-fit on F2 1.026				
Final R indexes [I>= 2σ (I)] R1 = 0.0398, wR2 = 0.0688				
Final R indexes [all data] $R1 = 0.0796$, wR2 = 0.0814				
Largest diff. peak/hole / e Å-3 0.26/-0.43				

S59

Table 2 Fractional Atomic Coordinates (\times 104) and Equivalent Isotropic Displacement Parameters (Å2 \times 103) for lft-1-19(compound 12s). Useq is defined as 1/3 of of the trace of the orthogonalised UIJ tensor.

Ator	n x	У	Z	U(eq)
Br1	5803.2(4) 4178.0(2)	5909.4(5	5) 50.47(15)
C1	7955(4)	5502(2)	-1392(5)	67.6(13)
C2	8300(4)	5104(2)	126(5)	48.9(10)
C3	8583(4)	4780.0(19)	1338(5)	45.3(10)
C4	9003(4)	4398.1(18)	2889(5)	44.3(10)
C5	7863(3)	4306.2(16)	3717(4)	36.1(9)
C6	7452(4)	4974.3(19)	3987(4)	37.0(9)
C7	8402(4)	3975.7(15)	5462(4)	34.2(9)
C8	9715(4)	3748.8(17)	6048(4)	39.2(9)
C9	10210(4)	3436.4(16)	7572(5)	43(1)
C10	9371(4)	3350.4(16)	8509(4)	39.2(9)
C11	8077(4)	3572.5(16)	8021(5)	41.9(9)
C12	7600(3)	3888.8(16)	6496(4)	35.5(9)
C13	6719(3)	3917.6(17)	2518(4)	35.5(9)
C14	5703(4)	4220.5(19)	1278(4)	48.3(10)
C15	4716(4)	3867.2(19)	156(5)	51.9(11)
C16	4700(4)	3199.8(19)	250(5)	43.4(10)
C17	5714(4)	2889.3(18)	1461(5)	50.5(11)
C18	6718(4)	3251.5(18)	2572(5)	46.1(10)
C19	3501(4)	2214(2)	-694(6)	69.3(13)
N1	7234(3)	5502.8(17)	4207(4)	53.4(9)
N2	9864(5)	3004.6(16)	10127(5)	57.8(10)
01	3643(3)	2895.6(13)	-877(3)	60.2(8)
O2	9117(4)	2939.5(17)	10959(4)	95.9(13)
03	10981(4)	2787.3(19)	10528(4)	100.5(13)

Ator	n U11	U22	U33	U23	U13 U	12
Br1	37.9(2)	54.9(2)	62.1(3)	5.9(2)	20.62(19) 5.7(2)
C1	69(3)	82(3)	52(3)	16(3)	19(2)	-3(3)
C2	52(3)	56(3)	43(3)	-7(2)	22(2)	-12(2)
C3	44(3)	55(3)	40(3)	-7(2)	18(2)	-7(2)
C4	37(2)	55(2)	42(2)	-6.8(19)	13.3(19)	-3.9(19)
C5	33(2)	37(2)	39(2)	1.2(17)	11.0(17)	2.0(17)
C6	33(2)	46(2)	30(2)	6.1(18)	8.3(17)	-1.7(19)
C7	34(2)	33(2)	34(2)	-4.1(16)	7.0(18)	-2.1(16)
C8	34(2)	47(2)	37(2)	0.6(18)	11.0(18)	-0.2(19)
C9	36(2)	42(2)	42(2)	-2.3(19)	-1(2)	1.7(19)
C10	51(3)	28.6(19)	30(2)	-1.4(16)	2(2)	0.5(19)
C11	54(3)	36(2)	38(2)	-0.1(18)	18(2)	2(2)
C12	33(2)	33.5(19)	40(2)	-2.7(17)	11.5(18)	2.3(17)
C13	28(2)	41(2)	36(2)	0.4(17)	8.1(18)	2.7(17)
C14	45(2)	43(2)	48(3)	9(2) 2	(2) 0(2))
C15	43(3)	54(3)	45(3)	13(2)	-5(2)	3(2)
C16	33(2)	53(3)	39(2)	-4(2)	4.3(19)	-2(2)
C17	46(2)	37(2)	55(3)	-4.4(19)	-4(2)	3(2)
C18	34(2)	51(3)	42(2)	-3(2)	-3.5(19)	9(2)
C19	59(3)	53(3)	78(3)	-11(2)	-6(3)	-8(2)
N1	57(2)	48(2)	56(2)	2.6(18)	17.8(18)	2.8(19)
N2	74(3)	43(2)	49(2)	5.1(18)	8(2) 3	(2)
01	45.4(17)	54.5(18)	60.0(19)	-1.4(15)	-13.8(15))-4.4(15)
O2	141(4)	93(3)	69(2)	36(2)	57(3)	53(2)
03	62(2)	131(3)	87(3)	60(2)	-7(2)	8(2)

Table 3 Anisotropic Displacement Parameters (Å2×103) for lft-1-19(compound 12s). The Anisotropic displacement factor exponent takes the form: $-2\pi 2[h2a*2U11+2hka*b*U12+...]$.

Tab	Table 4 Bond Lengths for lft-1-19(compound 12s).				
Ato	m Ate	om Length/Å	Atom Atom Length/Å		
Br1	C12	1.892(3)	C10 C11 1.371(5)		
C1	C2	1.459(5)	C10 N2 1.474(5)		
C2	C3	1.173(5)	C11 C12 1.380(5)		
C3	C4	1.463(5)	C13 C14 1.385(5)		
C4	C5	1.569(5)	C13 C18 1.372(5)		
C5	C6	1.479(5)	C14 C15 1.372(5)		
C5	C7	1.550(5)	C15 C16 1.376(5)		
C5	C13	1.531(5)	C16 C17 1.379(5)		
C6	N1	1.138(4)	C16 O1 1.365(4)		
C7	C8	1.392(5)	C17 C18 1.387(5)		
C7	C12	1.394(5)	C19 O1 1.424(4)		
C8	C9	1.378(5)	N2 O2 1.206(4)		
C9	C10	1.359(5)	N2 O3 1.202(4)		

Table 5 Bond Angles for lft-1-19(compound 12s).

Ator	n Ate	om A	tom Angle/°	Atom Atom Angle/°
C3	C2	C1	179.4(5)	C10 C11 C12 118.4(3)
C2	C3	C4	176.8(4)	C7 C12 Br1 123.0(3)
C3	C4	C5	113.3(3)	C11 C12 Br1 115.8(3)
C6	C5	C4	104.7(3)	C11 C12 C7 121.2(3)
C6	C5	C7	107.6(3)	C14 C13 C5 121.5(3)
C6	C5	C13	112.3(3)	C18 C13 C5 120.6(3)
C7	C5	C4	111.3(3)	C18 C13 C14 117.8(3)
C13	C5	C4	109.0(3)	C15 C14 C13 121.2(4)
C13	C5	C7	111.8(3)	C14 C15 C16 120.7(4)
N1	C6	C5	174.7(4)	C15 C16 C17 119.0(4)
C8	C7	C5	120.8(3)	O1 C16 C15 116.1(3)
C8	C7	C12	117.5(3)	O1 C16 C17 124.9(3)
C12	C7	C5	121.8(3)	C16 C17 C18 119.8(3)
C9	C8	C7	122.0(3)	C13 C18 C17 121.5(3)
C10	C9	C8	117.9(4)	O2 N2 C10 118.6(4)
C9	C10	C11	122.9(3)	O3 N2 C10 118.0(4)
C9	C10	N2	119.2(4)	O3 N2 O2 123.4(4)
C11	C10	N2	117.9(4)	C16 O1 C19 117.8(3)

Table 6 Hydrogen Atom Coordinates (Å×104) and Isotropic Displacement Parameters (Å2×103) for lft-1-19(compound 12s).

Atom	х	у	Z	U(eq)
H1A	7074	4 538	-210	01 101
H1B	8592	5427	-1984	101
H1C	7973	5953	-1089	101
H4A	9759	9 461	2 368	7 53
H4B	9300	3974	2645	53
H8	10275	3810	5390	47
H9	11090	3289	7948	52
H11	7533	3512	8699	50
H14	5690	4671	1204	58
H15	4050	4081	-677	62
H17	5725	2438	1533	61
H18	7407	3038	3373	55
H19A	2664	2071	-1462	104
H19B	3521	2120	437	104
H19C	4224	1990	-935	104

Computational details and xyz coordinates

All calculations were performed in Gaussian 09. Geometry optimizations were carried out with M06-2X/6-31+G(d,p), which is highly accurate for small moleulcar organic strucutres. Energies and optimizations were performed with the SMD continuum solvent model for DMSO. Vibrational frequencies were calculated to verify stationary points as minima or first-order saddle points (transition states). Intrinsic reaction coordinate (IRC) calculations were used to verify connection between transition states and intermediates. Solvated single point energies were carried out with M06-2X/def2-TZVPD downloaded from the EMSL basis set exchange. Enthalpies reported are the sum of $E_{(large)} + \Delta E_{ZPE(small)} + \Delta U_{vib(small)} + \Delta U_{rot(small)} + \alpha U_{trans(small)} + nRT + \Delta G_{solv(large)}$. *E* is the total SCF energy. $\Delta E_{ZPE(small)}$ is the zero-point energy correction. $\Delta U_{vib(small)}, \Delta U_{rot(small)}, and \Delta U_{trans(small)}$ are thermal energy vibrational, rotational, and translational corrections at 298 K. R is the gas constant. No concentration corrections were applied. $\Delta G_{solv(large)}$ is the standard state solvation free energy change.

Because C-H oxidation occurs with triplet oxygen, after the hydrogen atom abstraction transition state a pair of radicals are formed and then rebound to form a C-O bond on the singlet potential energy surface.

Relative pK_a value estimates were based on M06-2X/def2-TZVP//M06-2X/6-31+G(d,p) free energies (which include -T ΔS corrections) of enolates using the reaction equation shown below. The amide enolate was set to the reference pK_a value of 26.6. The calculated pK_a value the ester enolate was 22. For PhCH₂CN, the calculated pK_a value was 19. For PhSO₂Me, the calculated pK_a value was 30.

$$Ph \swarrow_{NMe_2}^{O\Theta} + Ph \swarrow_X^{O} \longrightarrow Ph \swarrow_{NMe_2}^{O\Theta} + Ph \swarrow_X^{O\Theta}$$

Full G09 Reference: Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.;
Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.;
Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.;
Nakai, H.; Vreven, T.; Montgomery, J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.;
Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.;
Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.;
Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.;
Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.;

Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J., Gaussian 09, Revision B.01. Wallingford CT, 2009.

Ester enoalte

С	1.7391080	0.0181050	-0.0000940
0	1.8049930	1.2614700	-0.0000100
С	0.6074610	-0.8146110	-0.0003460
С	-0.7567710	-0.3670350	-0.0000900
С	-1.8079760	-1.3276150	0.0000150
С	-1.1653310	0.9960870	-0.0001720
С	-3.1472880	-0.9620610	0.0001370
Н	-1.5448120	-2.3839500	-0.0000110
С	-2.5130150	1.3512130	-0.0000110
Н	-0.4008900	1.7643080	-0.0002590
С	-3.5243390	0.3871000	0.0001800
Н	-3.9094520	-1.7382290	0.0002360
Н	-2.7769630	2.4068770	-0.0000720
Н	-4.5713850	0.6740670	0.0004010
Н	0.7855970	-1.8855090	-0.0004510
0	2.9239590	-0.7105610	0.0000770
С	4.1145440	0.0574700	0.0001930
Н	4.1857580	0.6917030	0.8896090
Н	4.9367820	-0.6608030	-0.0001220
Н	4.1853910	0.6923560	-0.8887370

Ester CT complex

С	-2.0790370	0.8739400	0.7794300
С	-3.0406060	0.3845980	-0.1224480
Н	-2.3195020	0.8119070	1.8365240
0	-3.0000370	0.3247120	-1.3652000
С	-0.4506470	-2.3265200	0.5125600
С	-0.0835920	-2.0984890	-0.8149270
С	0.4124330	-1.9772070	1.5538950
Н	-1.4141460	-2.7746490	0.7369390
С	1.1456830	-1.5175520	-1.1111930
Н	-0.7574400	-2.3648180	-1.6223510
С	1.6455630	-1.3959690	1.2760720
Н	0.1221100	-2.1479700	2.5854540
С	1.9883330	-1.1816410	-0.0563360
Н	1.4442250	-1.3205720	-2.1340920
N	3.2850760	-0.5691030	-0.3599460
0	3.5734170	-0.3786420	-1.5320010
0	4.0252570	-0.2927880	0.5725470
С	-0.7848000	1.3787380	0.4198180
С	0.1281990	1.7600450	1.4446190
С	-0.3159790	1.5308090	-0.9156270
С	1.4052130	2.2272300	1.1628200
Η	-0.1872420	1.6640180	2.4824420
С	0.9677910	1.9987940	-1.1859450
Η	-0.9769220	1.2528710	-1.7285050
С	1.8500070	2.3465140	-0.1598420
Н	2.0687070	2.4898980	1.9840620
Н	1.2899730	2.0806670	-2.2223080

Η	2.8543920	2.6955660	-0.3810100
Н	2.3261460	-1.1096060	2.0692700
0	-4.1780630	-0.0819210	0.5287640
С	-5.1907160	-0.6068700	-0.3118030
Н	-4.8387160	-1.4824630	-0.8668510
Н	-6.0097370	-0.9002340	0.3478940
Н	-5.5490470	0.1396970	-1.0272760

Ester C-C addition TS

С	-1.7084210	0.4570220	0.7258980
С	-2.8372640	0.2613830	-0.1498360
Н	-1.9460920	0.3784870	1.7832360
0	-2.9051360	0.4834780	-1.3560550
С	-0.8892530	-1.5360210	0.5657820
С	-0.4255010	-1.6451110	-0.7910030
С	0.1156580	-1.5512630	1.5957990
Н	-1.8620090	-1.9559750	0.8072780
С	0.8942670	-1.4404590	-1.0977680
Н	-1.1436630	-1.8138710	-1.5875580
С	1.4354590	-1.3507510	1.2936610
Η	-0.1911730	-1.6476210	2.6334080
С	1.8425960	-1.2466510	-0.0613910
Η	1.2345700	-1.4505230	-2.1278750
N	3.1840010	-1.0020010	-0.3738820
0	3.5356970	-0.9492380	-1.5689380
0	4.0079120	-0.8410410	0.5480980
С	-0.5729670	1.2916920	0.3927610
С	0.2918620	1.6974420	1.4360600

С	-0.1894950	1.6144080	-0.9302120
С	1.4934840	2.3457470	1.1743470
Н	0.0129860	1.4752750	2.4638050
С	1.0137400	2.2688420	-1.1845720
Н	-0.8376220	1.3287390	-1.7495660
С	1.8747810	2.6205790	-0.1425510
Н	2.1424020	2.6280540	1.9995520
Н	1.2903410	2.4925190	-2.2120470
Н	2.8186310	3.1165820	-0.3501310
0	-3.8829070	-0.3171960	0.5108490
С	-5.0201440	-0.6345430	-0.2876570
Н	-5.7418060	-1.0926040	0.3889960
Н	-5.4498290	0.2670170	-0.7322950
Н	-4.7572780	-1.3368900	-1.0830440
Н	2.1851830	-1.2970930	2.0758700

INT1

С	0.7754880	0.4251960	0.1347750
С	1.4121090	1.7872930	-0.0653160
Η	0.2761250	0.4216220	1.1084640
0	1.7140520	2.2579930	-1.1421290
С	-0.3028540	0.1744640	-0.9687900
С	-0.9120690	-1.1981010	-0.8069300
С	-1.3574300	1.2563290	-0.9140690
Η	0.2377550	0.2317750	-1.9249130
С	-2.1769920	-1.3967870	-0.3832810
Η	-0.2778410	-2.0555310	-1.0201630
С	-2.6163310	1.0363000	-0.4826090

Η	-1.0585500	2.2610430	-1.2051580
С	-3.0694100	-0.2891100	-0.1338780
Н	-2.5634930	-2.4021610	-0.2500020
N	-4.3241110	-0.4962960	0.3236190
0	-4.7256140	-1.6744760	0.5849400
0	-5.1117320	0.4860870	0.5030880
С	1.8596100	-0.6381050	0.1443720
С	2.7516800	-0.7689180	-0.9270100
С	1.9463520	-1.5366950	1.2119750
С	3.7121700	-1.7794790	-0.9272040
Н	2.6950720	-0.0760510	-1.7629100
С	2.9062650	-2.5496600	1.2119150
Н	1.2536180	-1.4435720	2.0448220
С	3.7920420	-2.6736680	0.1419890
Н	4.3992840	-1.8686320	-1.7636950
Н	2.9597840	-3.2416060	2.0474470
Н	4.5400620	-3.4609700	0.1401310
0	1.6295550	2.4153570	1.0942390
С	2.2560530	3.7035130	1.0025560
Н	2.3292620	4.0699000	2.0252490
Н	3.2509140	3.6114900	0.5616720
Н	1.6458660	4.3795170	0.4003150
Н	-3.3292710	1.8521300	-0.4186800

Ester hydrogen atom abstraction TS

С	-1.7084210	0.4570220	0.7258980
С	-2.8372640	0.2613830	-0.1498360
Н	-1.9460920	0.3784870	1.7832360
0	-2.9051360	0.4834780	-1.3560550
С	-0.8892530	-1.5360210	0.5657820
С	-0.4255010	-1.6451110	-0.7910030
С	0.1156580	-1.5512630	1.5957990
Н	-1.8620090	-1.9559750	0.8072780
С	0.8942670	-1.4404590	-1.0977680
Н	-1.1436630	-1.8138710	-1.5875580
С	1.4354590	-1.3507510	1.2936610
Н	-0.1911730	-1.6476210	2.6334080
С	1.8425960	-1.2466510	-0.0613910
Н	1.2345700	-1.4505230	-2.1278750
N	3.1840010	-1.0020010	-0.3738820
0	3.5356970	-0.9492380	-1.5689380
0	4.0079120	-0.8410410	0.5480980
С	-0.5729670	1.2916920	0.3927610
С	0.2918620	1.6974420	1.4360600
С	-0.1894950	1.6144080	-0.9302120
С	1.4934840	2.3457470	1.1743470
Н	0.0129860	1.4752750	2.4638050
С	1.0137400	2.2688420	-1.1845720
Н	-0.8376220	1.3287390	-1.7495660
С	1.8747810	2.6205790	-0.1425510
Н	2.1424020	2.6280540	1.9995520
Н	1.2903410	2.4925190	-2.2120470

Η	2.8186310	3.1165820	-0.3501310
0	-3.8829070	-0.3171960	0.5108490
С	-5.0201440	-0.6345430	-0.2876570
Η	-5.7418060	-1.0926040	0.3889960
Η	-5.4498290	0.2670170	-0.7322950
Η	-4.7572780	-1.3368900	-1.0830440
Н	2.1851830	-1.2970930	2.0758700

Ester radical pair intermediates

С	1.1809230	0.5221750	-0.6567570
С	1.5832090	1.8207360	0.0297680
0	2.1942250	1.9127030	1.0714050
С	-0.3016050	0.2555660	-0.4294410
С	-1.0316720	-0.4389940	-1.4053050
С	-0.9647300	0.6392150	0.7447560
С	-2.3720190	-0.7488760	-1.2265240
Н	-0.5335950	-0.7423160	-2.3241160
С	-2.3066670	0.3438970	0.9486840
Н	-0.4284340	1.1821860	1.5211460
С	-3.0292070	-0.3590950	-0.0387540
Н	-2.9313340	-1.2829460	-1.9849130
Н	-2.8147410	0.6461760	1.8561390
N	-4.3718930	-0.6602840	0.1530240
0	-5.0091230	-1.2983420	-0.7649820
0	-4.9471410	-0.2944200	1.2443840
С	2.0649160	-0.6363240	-0.2284210
С	3.0126970	-1.1485410	-1.1175140
С	1.9469590	-1.2117950	1.0418310

С	3.8330330	-2.2168110	-0.7479400
Η	3.1074610	-0.7100330	-2.1081460
С	2.7676690	-2.2735080	1.4154390
Η	1.2088870	-0.8287940	1.7417260
С	3.7133070	-2.7806840	0.5206330
Η	4.5612720	-2.6068340	-1.4531060
Η	2.6674450	-2.7094760	2.4052240
Η	4.3481400	-3.6125110	0.8112300
Η	1.3276610	0.6821250	-1.7302010
0	1.1430770	2.8798180	-0.6573450
С	1.3690110	4.1602320	-0.0518090
Η	0.9580220	4.8908790	-0.7466320
Η	0.8519290	4.2188150	0.9087700
Н	2.4372950	4.3334850	0.0921570

INT2

С	-1.4123490	-0.1878550	-0.5283920
С	-2.4897750	-0.8149300	0.3398960
0	-2.4631140	-0.9006960	1.5498170
С	-0.0531910	-0.9530560	-0.3967820
С	0.8935070	-0.5115220	-1.4703200
С	0.5724990	-0.9156950	0.9652210
С	2.2011030	-0.2536860	-1.2462920
Н	0.4836360	-0.4315040	-2.4751300
С	1.8904970	-0.6661150	1.1601460
Н	-0.0729430	-1.1329760	1.8109860
С	2.7588580	-0.3397480	0.0717610
Н	2.8517100	0.0352640	-2.0655420
Η	2.3062730	-0.6889980	2.1625870
---	------------	------------	------------
N	4.0857330	-0.0772330	0.2908180
0	4.8343860	0.2253540	-0.6752610
0	4.5566210	-0.1413440	1.4571260
0	-0.5317030	-2.3247980	-0.6681140
0	0.5609080	-3.2288120	-0.6405900
Н	0.8644100	-3.1633510	0.2843630
С	-1.2681090	1.2983560	-0.2605420
С	-1.2594820	2.1821550	-1.3452020
С	-1.1097150	1.8134500	1.0318660
С	-1.0936470	3.5531460	-1.1481310
Η	-1.3831870	1.7915550	-2.3522300
С	-0.9470400	3.1844830	1.2298370
Η	-1.1210280	1.1418700	1.8839290
С	-0.9363690	4.0584590	0.1419980
Н	-1.0894340	4.2238190	-2.0023590
Η	-0.8272820	3.5697060	2.2382940
Н	-0.8080290	5.1252470	0.2997110
Η	-1.7261060	-0.3129470	-1.5681640
0	-3.5165390	-1.2521370	-0.3962460
С	-4.5861560	-1.8729730	0.3300400
Η	-5.3228460	-2.1600950	-0.4183330
Η	-4.2205960	-2.7550440	0.8601330
Н	-5.0229650	-1.1692680	1.0415610

Ester OOH anion TS

С	-1.2263950	-0.3551030	-0.5056860
С	-1.9200670	-1.4230310	0.3205970
0	-1.7913910	-1.5944890	1.5152630
С	0.2793520	-0.3224840	-0.3144900
С	1.0482030	0.2263160	-1.3742710
С	0.8941960	-0.4134330	0.9585670
С	2.3805940	0.5376360	-1.2159080
Н	0.5759610	0.3740110	-2.3418990
С	2.2341890	-0.1074040	1.1282470
Η	0.3145730	-0.7596430	1.8060500
С	2.9788090	0.3617560	0.0420350
Η	2.9638490	0.9284200	-2.0420160
Η	2.7032080	-0.2090370	2.1007180
N	4.3638410	0.6884470	0.2208980
0	5.0010780	1.1101860	-0.7445950
0	4.8717220	0.5354600	1.3321720
0	0.1683910	-2.4544860	-0.9050610
0	1.4522410	-2.9857980	-0.5339970
Η	1.6428050	-2.5123400	0.2925830
С	-1.8553030	1.0059330	-0.2222550
С	-2.3898250	1.7539360	-1.2749100
С	-1.8843420	1.5382130	1.0726130
С	-2.9427400	3.0145550	-1.0422800
Η	-2.3707960	1.3472010	-2.2831090
С	-2.4389810	2.7952630	1.3065970
Н	-1.4748570	0.9640460	1.8994020
С	-2.9687110	3.5382570	0.2493940

Η	-3.3528240	3.5844250	-1.8709670
Η	-2.4566600	3.1960370	2.3159380
Η	-3.3984880	4.5185640	0.4328760
Η	-1.4064150	-0.5980010	-1.5544610
0	-2.8159500	-2.0899920	-0.4152810
С	-3.5497110	-3.1064200	0.2744540
Η	-4.2175360	-3.5457300	-0.4653680
Η	-2.8669890	-3.8645420	0.6652480
Н	-4.1270470	-2.6735160	1.0944780

Ester arylation product

С	1.0567430	0.5343710	0.6935440
С	1.6009000	1.7715550	-0.0104420
0	1.0487110	2.3789640	-0.8997730
С	-0.8827060	-0.0050440	-0.8516070
С	-1.3404700	0.4960010	1.4673370
С	-2.2369620	-0.1943420	-1.0892130
Η	-0.1791060	-0.1324140	-1.6686580
С	-2.7025440	0.3059660	1.2522840
Н	-0.9900220	0.7643970	2.4595820
С	-3.1226540	-0.0357920	-0.0262880
Н	-2.6013550	-0.4617390	-2.0738350
N	-4.5547170	-0.2431350	-0.2651890
0	-5.3205710	-0.1118650	0.6774360
0	-4.9128570	-0.5378800	-1.3952370
С	-0.4230210	0.3430790	0.4249200
С	1.8620220	-0.7057730	0.3171350
С	2.5413630	-0.8122100	-0.8993350

С	1.8766040	-1.7875640	1.2034110
С	3.2255120	-1.9845040	-1.2246490
Η	2.5441700	0.0166800	-1.6047490
С	2.5586510	-2.9585090	0.8791880
Η	1.3490000	-1.7079190	2.1512500
С	3.2357220	-3.0597630	-0.3373390
Η	3.7516620	-2.0537770	-2.1720180
Н	2.5644710	-3.7897370	1.5780390
Η	3.7700760	-3.9705170	-0.5902620
Η	1.1915720	0.7057610	1.7667760
0	2.7956020	2.1044290	0.4809580
С	3.4451640	3.2210660	-0.1462450
Η	4.3960430	3.3352350	0.3711950
Н	3.6116820	3.0128340	-1.2053930
Н	2.8405040	4.1232850	-0.0361880
Н	-3.4187030	0.4194540	2.0572930

Amide enolate

С	-1.4239760	-0.3506970	-0.1134090
0	-1.2805270	-1.6038200	-0.0815790
С	-3.0350470	1.5457860	-0.0322230
Н	-4.0954440	1.7236150	-0.2300830
Н	-2.8193950	1.8760170	0.9977650
Н	-2.4621270	2.1696020	-0.7218240
С	1.0334820	0.2695080	-0.0206030
С	1.9820400	1.3313960	0.0418350
С	1.5827600	-1.0436000	-0.0413270
С	3.3513060	1.1069010	0.0773340

Η	1.6124870	2.3553500	0.0607810
С	2.9602320	-1.2572460	-0.0070440
Η	0.8995200	-1.8827110	-0.0840660
С	3.8665080	-0.1959590	0.0525670
Η	4.0282870	1.9571020	0.1239650
Н	3.3318290	-2.2799440	-0.0266920
Н	4.9372100	-0.3740900	0.0794720
С	-0.3690160	0.5905390	-0.0569840
Η	-0.5997630	1.6485570	-0.0438020
N	-2.7536780	0.1378720	-0.2434940
С	-3.7970520	-0.7362350	0.2674710
Н	-3.8753610	-0.6887560	1.3675440
Н	-4.7603850	-0.4366890	-0.1549890
Η	-3.5843230	-1.7649570	-0.0166830

Amide TS

С	-1.5250960	0.4719880	0.5794290
С	-2.6085850	0.3707850	-0.3837820
Η	-1.7787110	0.3001780	1.6193510
0	-2.5345460	0.7980850	-1.5531640
С	-0.7004800	-1.5553890	0.2617760
С	-0.1531160	-1.5080350	-1.0625120
С	0.2258240	-1.6927830	1.3488930
Н	-1.6996960	-1.9640260	0.3841410
С	1.1872870	-1.2961800	-1.2578330
Η	-0.8207740	-1.5636290	-1.9166700
С	1.5668250	-1.4866950	1.1593780
Н	-0.1532920	-1.8884850	2.3482220

С	2.0646880	-1.2461150	-0.1461770
Н	1.5959470	-1.1917900	-2.2572460
N	3.4302950	-1.0052150	-0.3411890
0	3.8607660	-0.8187540	-1.4962250
0	4.1955140	-0.9869650	0.6428860
С	-0.3485960	1.2915060	0.3924360
С	0.4609490	1.5613250	1.5247550
С	0.1394040	1.7331500	-0.8628360
С	1.6949050	2.1908340	1.4115420
Η	0.1080680	1.2485590	2.5053710
С	1.3742780	2.3701260	-0.9675830
Η	-0.4615630	1.5547470	-1.7452030
С	2.1733150	2.5861530	0.1578880
Η	2.2927140	2.3659890	2.3025560
Η	1.7262270	2.6859200	-1.9470090
Н	3.1413340	3.0700260	0.0637060
С	-4.9020890	-0.2820540	-0.8632940
Н	-5.5110290	-1.1755140	-0.7046120
Н	-5.5235760	0.6030250	-0.6597990
Η	-4.5785430	-0.2463210	-1.9018060
N	-3.7398080	-0.3347610	0.0080030
С	-4.0261310	-0.6236060	1.4053000
Н	-4.2309090	0.2865080	1.9871090
Н	-4.9106400	-1.2623630	1.4497070
Н	-3.2052510	-1.1648020	1.8813010
Н	2.2621160	-1.5271700	1.9909260

Cyano enolate

С	-0.1676240	-0.4151120	-0.0000530
С	0.9438750	-1.3000870	-0.0001370
С	0.1364830	0.9724840	-0.0000520
С	2.2520120	-0.8318270	0.0000450
Н	0.7575700	-2.3720580	-0.0002660
С	1.4499920	1.4307300	-0.0000290
Н	-0.6785180	1.6932890	-0.0001190
С	2.5287580	0.5405920	0.0000870
Н	3.0699830	-1.5487320	0.0000270
Н	1.6339110	2.5027480	-0.0000320
Н	3.5517690	0.9032180	0.0002160
С	-1.5093080	-0.9250290	0.0001320
Н	-1.6832800	-1.9952620	0.0002790
С	-2.6138780	-0.0874660	-0.0000270
N	-3.5390420	0.6444410	0.0000140

Cyano TS

С	2.5971850	0.3639980	0.5702170
С	1.2993230	-1.1088810	1.5304980
С	0.4727960	-0.3017920	2.3769290
С	0.6450920	-1.7789130	0.4483160
Η	2.1716330	-1.5910610	1.9607480
С	-0.7853470	0.0510100	1.9781400
Η	0.8751510	0.0922230	3.3050690
С	-0.6141620	-1.4144640	0.0416680
Η	1.1743950	-2.5471330	-0.1059420
С	-1.3638610	-0.4493460	0.7783730

Η	-1.3873140	0.7176860	2.5844280
N	-2.6400800	0.0334570	0.4233830
0	-3.1958960	0.8506470	1.1796910
0	-3.1909620	-0.3512510	-0.6162990
Cl	-1.2387700	-2.2669650	-1.3524830
С	1.6433820	1.1590250	-0.1782200
С	1.1974760	0.7804930	-1.4632070
С	1.0152020	2.2607370	0.4413410
С	0.1453700	1.4506100	-2.0786530
Η	1.6700480	-0.0583540	-1.9696000
С	-0.0373430	2.9263000	-0.1790250
Н	1.3542880	2.5770630	1.4248570
С	-0.4930850	2.5147910	-1.4346840
Η	-0.1903280	1.1313530	-3.0619230
Η	-0.5139970	3.7632040	0.3245900
Η	-1.3233220	3.0267430	-1.9122770
Η	3.0219470	0.7973780	1.4718640
С	3.4560620	-0.5173430	-0.1229970
N	4.1019250	-1.3167720	-0.6789410

(Methylsulfonyl)benzene enolate

С	-2.1434970	-0.0665850	1.5068450
Н	-1.8327200	0.8199190	2.0638810
Н	-1.8301740	-0.9989330	1.9817920
S	-1.5277110	0.0037290	-0.0638530
0	-1.8839760	-1.2304980	-0.8101840
0	-1.8791920	1.3010860	-0.6965640
С	0.2860810	0.0022030	-0.0781230

С	0.9782870	1.2120810	-0.0364940
С	0.9738130	-1.2111630	-0.0443490
С	2.3714170	1.2060450	0.0385030
Н	0.4271280	2.1470780	-0.0741760
С	2.3663410	-1.2111550	0.0304330
Η	0.4203130	-2.1448660	-0.0872950
С	3.0665340	-0.0037860	0.0740090
Н	2.9139200	2.1466240	0.0647540
Η	2.9054190	-2.1538230	0.0509060
Η	4.1509770	-0.0062010	0.1308350

(Methylsulfonyl)benzene enolate addition TS

С	0.6026160	1.1177380	1.0376600
Н	1.1473310	2.0614930	1.0934460
С	-1.6057250	1.7796550	1.0435110
С	-2.0683230	1.8521790	-0.3049610
С	-2.2601300	0.8578590	1.9164590
Н	-1.1473860	2.6589800	1.4769760
С	-2.9456530	0.9189770	-0.8014280
Η	-1.6832240	2.6281150	-0.9582230
С	-3.1332420	-0.0831570	1.4245570
Η	-2.0298040	0.8734280	2.9773380
С	-3.4556150	-0.0805920	0.0528320
Η	-3.2706240	0.9529480	-1.8354030
N	-4.3674980	-1.0419130	-0.4557400
0	-4.6717530	-1.0062240	-1.6546710
0	-4.8336950	-1.8940350	0.3112670
Н	0.6617490	0.5193130	1.9477830

S	1.1290430	0.2231880	-0.3131010
0	0.4408200	-1.0884970	-0.3489580
0	1.0542440	1.0777280	-1.5211940
С	2.8819450	-0.1937440	-0.1622900
С	3.8412150	0.6764410	-0.6793120
С	3.2574540	-1.3432850	0.5333550
С	5.1939370	0.3876100	-0.5006740
Η	3.5273620	1.5622190	-1.2235720
С	4.6116200	-1.6250570	0.7079440
Н	2.4954780	-2.0122260	0.9229770
С	5.5799630	-0.7607810	0.1926120
Н	5.9460370	1.0571450	-0.9074200
Н	4.9108290	-2.5218460	1.2423770
Н	6.6338490	-0.9840720	0.3288450
Н	-3.6010920	-0.8079600	2.0815510

(Nitromethyl)benzene enolate

С	1.1563460	-0.7646130	0.0000550
С	-0.2178170	-0.3143490	0.0001140
С	-0.6669680	1.0262610	0.0001270
С	-1.2113260	-1.3254480	-0.0000150
С	-2.0314920	1.3209670	0.0000470
Η	0.0626870	1.8241130	0.0002390
С	-2.5656340	-1.0207940	-0.0000940
Η	-0.8977930	-2.3670040	0.0000010
С	-2.9929580	0.3117200	-0.0000250
Η	-2.3429550	2.3626060	0.0000580
Н	-3.2945250	-1.8269940	-0.0001400

Η	-4.0515010	0.5533960	-0.0001560
Н	1.3669110	-1.8251600	-0.0000110
N	2.2492240	0.0047940	-0.0000450
0	2.1699220	1.2760780	-0.0001790
0	3.4040410	-0.5457000	0.0000630

(Nitromethyl)benzene enolate addition TS

С	2.0258040	0.0627230	0.5862260
С	1.0001080	-1.6399070	0.6390710
С	0.0177560	-1.4347750	1.6845970
С	0.4720000	-1.8629330	-0.6899430
Н	1.8933330	-2.2029210	0.9125310
С	-1.2799300	-1.1296050	1.3838660
Н	0.3431290	-1.4526190	2.7207790
С	-0.8257890	-1.5452830	-0.9903960
Н	1.1319500	-2.2297750	-1.4694030
С	-1.7118190	-1.1273780	0.0327870
Н	-1.9977170	-0.9163350	2.1687850
N	-3.0372910	-0.7955890	-0.2801550
0	-3.8198800	-0.4798440	0.6346580
0	-3.4076300	-0.8162280	-1.4681410
С	1.0901430	1.1371800	0.2347800
С	0.6513990	1.4559640	-1.0642930
С	0.4928350	1.8083740	1.3196850
С	-0.3456660	2.4124990	-1.2559060
Н	1.0859210	0.9527680	-1.9169950
С	-0.5071100	2.7554270	1.1223130
Н	0.8184070	1.5732180	2.3301920

С	-0.9363650	3.0602110	-0.1709160
Н	-0.6698920	2.6438690	-2.2668650
Н	-0.9521140	3.2544350	1.9784280
Н	-1.7175370	3.7976840	-0.3302140
Н	2.3833670	0.0662700	1.6101000
Н	-1.2015190	-1.6483680	-2.0029930
N	3.0594830	-0.3375590	-0.2720360
0	2.9566920	-0.1722710	-1.4987180
0	4.0042080	-0.9843040	0.2246710

¹H and ¹³C NMR of Products

