Electronic Supplementary Information

for

Choosing Sides: Unusual Ultrafast Charge Transfer Pathways in an

Asymmetric Electron-Accepting Cyclophane that Binds an Electron Donor[†]

Jiawang Zhou,^{1,2‡} Yilei Wu,^{1,2‡} Indranil Roy,¹ Avik Samanta,¹

J. Fraser Stoddart,^{1,3,4} Ryan M. Young,^{1,2*} and Michael R. Wasielewski^{1,2*}

¹Department of Chemistry and ²Institute for Sustainability and Energy,

Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113

³Institute for Molecular Design and Synthesis, Tianjin University, Tianjin 300072, China

⁴School of Chemistry, University of New South Wales, Sydney, New South Wales 2052,

Australia

[†]J.Z. and Y.W. contributed equally.

Table of Contents

Section A. Materials / General Methods / Instrumentation	S2
Section B. Synthetic Protocols	S3
Section C. NMR Spectroscopies	S5
Section D. Crystallographic Characterization	S6
Section E. Steady-State and Time-Resolved Spectroscopy	S8
Section F. References	S18

Section A. Materials / General Methods

All chemicals and reagents were purchased from commercial suppliers (Aldrich or Fisher) and used without further purification. 2,5-di(pyridin-4-yl)thiazolo[5,4-d]thiazole (TzBIPY), TTzExVBox•4PF₆, Bn-TTz•2PF₆ and Bn-ExV•2PF₆ were prepared according to previous literature procedures.^{1, 2} Thin layer chromatography (TLC) was performed on silica gel 60 F254 (E. Merck). Column chromatography was carried out on silica gel 60F (Merck 9385, 0.040–0.063 mm). High-resolution mass spectra were measured on an Agilent 6210 Time of Flight (TOF) LC-MS, using an ESI source, coupled with Agilent 1100 HPLC stack, using direct infusion (0.6 mL/min). Nuclear magnetic resonance (NMR) spectra were recorded on a Bruker Avance 600 and Varian P-Inova 500 spectrometers, with working frequencies of 500 and 600 MHz, respectively. Chemical shifts were reported in ppm relative to the signals corresponding to the residual nondeuterated solvents (CD₃CN: δ 1.94 ppm).

UV/Vis absorption spectra were recorded using а UV-3600 Shimadzu spectrophotometer. Cyclic Voltammetry (CV) experiments were carried out at room temperature in Ar-purged solutions of dry CH₃CN with a Gamry Multipurpose instrument (Reference 600) interfaced to a PC. All CV experiments were performed using a glassy carbon working electrode (0.071 cm²). The electrode surface was polished routinely with 0.05 µm alumina-water slurry on a felt surface immediately before use. Platinum wire (Pt) and Ag/AgCl electrode were used as counter electrode and reference electrode, respectively. The concentration of the sample and supporting electrolyte, tetrabutylammonium hexafluorophosphate (TBAPF₆), were 1.0 mM and 0.1 M, respectively. The CV cell was dried in an oven immediately before use, and Ar was continually flushed through the cell as it was cooled down to room temperature to avoid condensation of H₂O.

Section B. Synthetic Protocols

1) Bis-bromomethyl(bis-p-benzyl-4,4'-(thiazolo[5,4-d]thiazole-2,5-diyl))bis(hexafluoro-

phosphate) = $TTz-DB \cdot 2PF_6$

Scheme S1. Synthesis of TTz-DB•2PF₆(5•2PF₆)

The synthetic protocol was adapted from the literature procedure.¹ α , α -Dibromo- ρ -xylene (3.69 g, 13.86 mmol) was introduced into a round-bottomed flask and dry CH₂Cl₂ (30 mL) was added to the flask. The mixture was heated under reflux at 50 °C to obtain a clear solution. Once all the compounds had dissolved the temperature was raised to 90 °C. TzBIPY (409 mg, 1.38 mmol) was dissolved in dry CH₃CN (60 mL) and added to the reaction mixture over 1 h (4-5 portions). The yellow precipitate started forming after 30 min. The reaction mixture was stirred for 2 days at 90 °C, then it was brought to the room temperature and the yellow precipitate was filtered off and washed with CH₂Cl₂ to remove the unreacted starting materials. Finally, the solid was dissolved in H₂O and an excess of NH₄PF₆ was added to precipitate the crude product. Excess NH₄PF₆ was removed by washing several times with H₂O to obtain the pure whitish yellow product in ca. 80% yield. ¹H NMR (500 MHz, CD₃CN, 25 °C): δ = 8.84 (AA' of AA'XX', *J* = 6.5

Hz, 4H), 8.54 (XX' of AA'XX', *J* = 6.5 Hz, 4H), 7.55 (AA' of AA'BB', *J* = 7.8 Hz, 4H), 7.47 (BB' of AA'BB', *J* = 7.8 Hz, 4H), 5.75 (s, 4H), 4.61 (s, 4H). ¹³C NMR (125 MHz, CD₃CN, 25 °C): δ = 166.0, 158.5, 157.1, 146.6, 141.2 133.8, 131.2, 130.6, 125.8, 64.9, 33.5.

2) TTzBox•4 PF_6

Scheme S2. Synthesis of 6•4PF₆.

TTz-DB•2PF₆ (0.191 g, 0.20 mmol), TzBIPY (59 mg, 0.20 mmol) and TBAI (0.016 g) were introduced into round-bottomed flask and dry CH₃CN (180 mL) was added to the flask. The mixture was stirred at 80 °C for 4 days. The reaction mixture was brought to room temperature and excess of NH₄Cl was added to precipitate a yellow solid. The precipitate was filtered off and washed with Me₂CO and CH₂Cl₂ to remove the tetrabutylammonium salt. The solid was dried and then dissolved in H₂O, and reprecipitated as its PF_6^- salt by adding solid NH₄PF₆ (~5% (w/v)). The excess NH₄PF₆ was removed by multiple washes with H₂O. Finally, pure TTzBox•4PF₆ was obtained after running a reverse-phase chromatography column using H₂O/ CH₃CN (9:1 v/v) in 25% yield as a yellow solid. ¹H NMR (500 MHz, CD₃CN, 25 °C) δ = 8.86 (d, 6.8 Hz, 8H), 8.36 (d, 6.8 Hz, 8H), 7.62 (d, 8 Hz, 8H), 5.72 (s, 8H). ¹³C NMR (125 MHz, CDCl₃, 25 °C) δ = 165.7, 156.9, 148.2, 146.0, 137.0, 131.1, 125.8, 65.0.

Section C. NMR Spectroscopies

¹H NMR Spectra in CD₃CN:

Figure S1. Annotated ¹H NMR spectrum (500 MHz, CD₃CN, 25 °C) of TTxBox•4PF₆.

¹³C NMR Spectra in CD₃CN:

Figure S2. Annotated ¹³C NMR spectrum (500 MHz, CD₃CN, 25 °C) of TTzBox•4PF₆.

Figure S3. Aromatic-region insets of the ¹H NMR spectra of hosts and the Per guest and its 1:1 complexes recorded in CD₃CN at 298 K on a 500 MHz instrument. Upfield shifts of the aromatic protons of ExV^{2+} and TTz^{2+} subunits as well as downfield shifts of the *p*-xylene protons are evident, indicating the binding of a Per inside $TTzExV^{4+}$ and $TTzBox^{4+}$ in solution.

Section D. Crystallographic Characterization

A suitable crystal was selected and the crystal was mounted on a MITIGEN holder in Paratone oil on a Kappa Apex 2 diffractometer. The crystal was kept at 99.93 K during data collection. Using Olex2,³ the structure was solved with the ShelXT⁴ structure solution program using Direct Methods and refined with the ShelXL⁵ refinement package using Least Squares minimization. The crystallographic data for $Per \subset TTzBox \cdot 4PF_6$ (CCDC 1872160) and for $Per \subset TTzExVBox \cdot 4PF_6$ (CCDC 1872161) are available free of charge from the Cambridge Crystallographic Data Centre via <u>www.ccdc.cam.ac.uk/data_request/cif</u>.

1) Per⊂TTzExVBox•4PF₆

a) Method: Single crystals of $Per \subset TTzExVBox \cdot 4PF_6$ were grown by slow vapor diffusion of ${}^{i}Pr_2O$ into a solution of $Per \subset TTzExVBox \cdot 4PF_6$ in CH₃CN over the course of 3 days. A suitable single crystal was selected and mounted in inert oil and transferred to the cold gas stream of a Kappa Apex 2 diffractometer. The crystal was kept at 100 K during data collection. Using Olex2, the structure was solved with the ShelXT structure solution program using Direct Methods and refined with the ShelXL refinement package using Least Squares minimization.

b) Crystal Data: for C₉₀H₆₆F₂₄N₈P₄S₂ (*M*=1903.50): triclinic, space group P-1 (no. 2), *a* = 10.448(2) Å, *b* = 10.636(2) Å, *c* = 19.123(4) Å, *α* = 101.538(10)°, *β* = 95.067(11)°, *γ* = 104.449(10)°, *V* = 1994.8(7) Å³, *Z* = 1, *T* = 100.0 K, μ (CuK α) = 2.353 mm⁻¹, *Dcalc* = 1.585 g/mm³, 16091 reflections measured (4.768 $\leq 2\Theta \leq 130.29$), 6669 unique ($R_{int} = 0.0675$, $R_{sigma} = 0.0599$) which were used in all calculations. The final R_1 was 0.0760 (I > 2 σ (I)) and wR_2 was 0.1943 (all data).

c) Refinement Details: Distance restraints were imposed on the disordered Nitrogen-Carbon and Sulfur-Carbon distances. The enhanced rigid-bond restraint (SHELX keyword RIGU) was applied globally.⁶ There is a full molecule disorder on the Box.

2) Per⊂TTzBox•4PF₆

a) Method: Single crystals of $Per \subset TTzBox \cdot 4PF_6$ were grown by slow vapor diffusion of iPr_2O into a solution of $Per \subset TTzBox \cdot 4PF_6$ in CH₃CN over the course of 3 days. A suitable single crystal was selected and mounted in inert oil and transferred to the cold gas stream of a Kappa

Apex 2 diffractometer. The crystal was kept at 100 K during data collection. Using Olex2, the structure was solved with the ShelXT structure solution program using Direct Methods and refined with the ShelXL refinement package using Least Squares minimization.

b) Crystal Data for $C_{88}H_{62}F_{24}N_{10}P_4S_4$ (*M*=1967.59): triclinic, space group P-1 (no. 2), *a* = 10.3592(4) Å, *b* = 10.5764(4) Å, *c* = 19.6578(8) Å, *a* = 102.138(2)°, *β* = 95.368(2)°, *γ* = 103.900(2)°, *V* = 2020.28(14) Å^3, *Z* = 1, *T* = 100.01 K, μ (CuK α) = 2.823 mm⁻¹, *Dcalc* = 1.617 g/mm^3, 33529 reflections measured (8.874 $\leq 2\Theta \leq 130.354$), 6894 unique ($R_{int} = 0.0335$, $R_{sigma} = 0.0256$) which were used in all calculations. The final R_1 was 0.0370 (I > 2 σ (I)) and wR_2 was 0.1019 (all data).

c) Refinement Details: The enhanced rigid-bond restraint (SHELX keyword RIGU) was applied on the disordered atoms.

Section E. Steady-State and Time-Resolved Spectroscopy

All transient absorption data were background-subtracted to remove scattered light and thermally lensed fluorescence from the spectra, and then corrected for group delay dispersion (GDD, or "chirp") using Surface Xplorer Pro 4 (Ultrafast Systems, LLC). Kinetic traces were fit (singly or globally) in a laboratory-written MATLAB program.⁷ The program solves the differential equations of the specified kinetic model, then convolutes them with a Gaussian instrument response function before employing a least-squares fitting to iteratively find the parameters which result in matches to the same functions for all selected wavelengths. Once these parameters are established, they are fed into the model solutions to yield the populations of each state in model. Finally, the total raw data matrix is deconvoluted with these populations as a function of time to produce the spectra associated with each species.

We used the following first-order kinetic models with rate matrices *K* for the compounds and excitation wavelengths:

For the fsTA of Per⊂TTzExVBox⁴⁺ and Per⊂TTzBox⁴⁺ exciting at 414 and 450 nm:

$$\underline{\underline{K}} = \begin{pmatrix} -k_A & 0 & 0\\ 0 & -k_B & 0\\ 0 & 0 & -k_C \end{pmatrix}$$
(Eqn. S1)

where k_A , k_B and k_C represent the rates of formation of the CS state, the decay of the CS state and of the perylene S₁ state, respectively. A species-associated model was initially employed to fit the data, but it was not able to successfully separate the S₁ spectra between the free perylene and the perylene encapsulated within the cyclophane. Therefore, a decay-associated model was used instead.

For the fsTA of Bn-TTz^{+•} exciting at 620 nm:

$$\underline{\underline{K}} = \begin{pmatrix} -k_A & 0\\ k_A & -k_B \end{pmatrix}$$
(Eqn. S2)

where A and B represent the D_n and D_1 states, respectively.

For the fsTA of Per⊂TTzExVBox^{3+•} exciting at 620 nm:

$$\underline{\underline{K}} = \begin{pmatrix} -k_A & 0\\ k_A & -k_B \end{pmatrix}$$
(Eqn. S3)

where A and B represent the D_n and CS states, respectively.

For the fsTA of TTzExVBox^{3+•} exciting at 620 nm:

$$\underline{\underline{K}} = \begin{pmatrix} -k_A - k_B & 0 & 0 \\ -k_A & -k_C & 0 \\ -k_B & 0 & -k_D \end{pmatrix}$$
(Eqn. S4)

where k_A and k_B represent the rates for formation of the D₁ and CS states from D_n, respectively. For simplicity, k_A is fixed to (0.8 ps)⁻¹ based on the value from the fsTA of Bn-TTz^{+•}. C and D represent the D₁ and CS states, respectively.

c) Transient Absorption Spectroscopy:

The time-resolved differential absorption spectra are reported in Figures 6, 8-10 in the main text and S8, S12-S14, while the kinetic analyses are presented in Figures S7-S14.

Figure S4. Steady-state absorption spectra of TTzExVBox⁴⁺, Bn-TTz²⁺, Bn-ExV²⁺ and Per in CH₃CN.

Figure S5. Steady-state absorption spectra of excess $Bn-ExV^{2+}$ and $Bn-TTz^{2+}$ chemically reduced by equal amount of $CoCp_2$ in CH_3CN . The absorption bands at 330 and 405 nm signify the residual $Bn-ExV^{2+}$ and $Bn-TTz^{2+}$, respectively.

Figure S6. Steady-state absorption spectra of TTzExVBox⁴⁺ and Per \subset TTzExVBox⁴⁺ chemically reduced by CoCp₂ in CH₃CN. The amount of CoCp₂ was less than one molar equivalent of either TTzExVBox⁴⁺ or Per \subset TTzExVBox⁴⁺.

Figure S7. (a) Multiple-wavelength fits and (b) populations of kinetic states of $Per \subset TTzExVBox^{4+}$ in CH₃CN excited at 414 nm. (A: formation of CS state, B: decay of CS state, C: Per S₁)

Figure S8. (a) fsTA spectra and (b) decay-associated spectra (DAS) and (c) Multiple-wavelength fits and (d) populations of kinetic states of Per \subset TTzBox⁴⁺ in CH₃CN excited at 414 nm. (A: formation of CS state, B: decay of CS state, C: Per S₁)

Figure S9. (a) Multiple-wavelength fits and (b) populations of kinetic states of Bn-TTz⁺⁺ in CH₃CN excited at 620 nm. (A: D_n , B: D_1)

Figure S10. (a) Multiple-wavelength fits and (b) populations of kinetic states of TTzExVBox^{3+•} in CH₃CN excited at 620 nm. (A: D_n , B: D_1 , C: CS state)

Figure S11. (a) Multiple-wavelength fits and (b) populations of kinetic states of $Per \subset TTzExVBox^{3+\bullet}$ in CH₃CN excited at 620 nm. (A: D_n, B: CS state)

Figure S13. (a) fsTA spectra and (b) decay-associated spectra (DAS) and (c) Multiple-wavelength fits and (d) populations of kinetic states of Per \subset TTzBox⁴⁺ in CH₃CN excited at 450 nm. (A: formation of CS state, B: decay of CS state, C: Per S₁)

Figure S14. (a) fsTA spectra and (b) species-associated spectra (SAS) and (c) Multiple-wavelength fits and (d) populations of kinetic states of Per in CH_3CN excited at 414 nm. (A: Per S₁)

Section F. References

1. J. C. Barnes, M. Juricek, N. L. Strutt, M. Frasconi, S. Sampath, M. A. Giesener, P. L. McGrier, C. J. Bruns, C. L. Stern, A. A. Sarjeant and J. F. Stoddart, *J. Am. Chem. Soc*, 2013, **135**, 183-192.

- 2. I. Roy, S. Bobbala, J. Zhou, M. T. Nguyen, S. K. M. Nalluri, Y. Wu, D. P. Ferris, E. A. Scott,
- M. R. Wasielewski and J. F. Stoddart, J. Am. Chem. Soc, 2018, 140, 7206-7212.
- 3. O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, *J. Appl. Crystallogr*, 2009, **42**, 339-341.
- 4. G. M. Sheldrick, Acta Crystallogr. C, 2015, 71, 3-8.
- 5. G. M. Sheldrick, Acta Crystallogr. C, 2015, 71, 3-8.
- 6. A. Thorn, B. Dittrich and G. M. Sheldrick, Acta Crystallogr. A, 2012, 68, 448-451.
- 7. MATLAB, 2018, The Mathworks, Inc., Natick, Massachusetts, United States.