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Supplementary Material

S1 Process and Factory Assumptions

S1.1 Sequence Definitions

Some details of the sequences analysed in this work are given in Table S1, and the process steps
assumed for each sequence are shown in Table S2.

Table S1 Demonstrated results using these different sequences

Sequence A: Al-BSF B: PERC C: LDSE D:
PERC+LDSE

E:PERC+LaserH F:PERC+LEDH G:PERC+FurnH

Status Industrial
production
[1]

Industrial
production
[1]

Previous in-
dustrial pro-
duction [2]

Lab
Demo[3, 4]

Lab demo [5] Lab Demo[6] Described [5]

Table S2 Definitions of Process Sequences A (Al BSF), B (PERC), C (LDSE), D (LDSE + PERC), E (PERC +
LaserH), F (PERC + LEDH) and G (PERC + FurnH)

A B C D E F G Process Description Equipment Major materials
X X X X X X X p-type Wafer supply None p-type Wafer
X X X X X X X Texture Texture Tool Texture Chemicals
X X X X X X X Diffusion Diffusion Furnace Diffusion Gases
X X X X X X X Rear etch Etch Tool Etch chemicals

X X Oxide Layer Oxidation Furnace Process Gases
X X X X X X X Front SiN PECVD SiN Gases

X X X X X Rear Passivation Layers PECVD SiN/AlOx Gases
X X X X X Dielectric Openings Laser None

X X X X X X X Rear Screen print Ag/Al Screen Printer Ag and Al paste
X X X X X Front Screen Print Ag Screen Printer Ag paste
X X X X X X X Standard Firing Firing Furnace

X Hydrogenation add-on Firing Furnace Upgrade
X X Dopant Application Spray coater Phosphoric acid
X X Laser Doping Laser None
X X Ni/Cu/Ag Plating Plating Equipment Plating solutions
X X Nickel Sinter process

X Laser Hydrogenation Hydrogenation Laser
X LED Hydrogenation Hydrogenation LED System

X X X X X X X Cell test Cell tester and sorter None
X X X X X X X Module fabrication Module Line Module Materials

S1.2 Other Factory Assumptions

Various factory global assumptions are shown in Table S3. Note that unlike other parameters in this
analysis, these assumptions do not vary within the Monte Carlo analysis.

S2 Data Sources and Assumptions

S2.1 Cell Fabrication Cost Data Sources

Detailed costs of the standard production processes (e.g. equipment cost, volume material purchase
prices, manufacturing yield) are not generally made public by manufacturing companies. Manufac-
turing companies see cost information as a source of competitive advantage, and negotiated pricing
is often “commercial in confidence”. In some cases an industry-institute collaboration exists, and this
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Table S3 Factory Assumptions

Parameter Assumption Comment
Factory location China Most PV manufacturing is in China
Factory start date 2017
Factory Throughput (modules/year) 1.6 Million Matching the size of Powell et al. model
Factory Throughput (MW/year at 280W/module) 450
Depreciation time - Equip and Facilities 7 years
Depreciation time - Building 15 years
Currency for Calculations US$
Operator Cost ($/h) 8.3 Goodrich et al. [7] + estimated wage inflation
Maintenance Technician Cost ($/h) 12.1 Goodrich et al. [7] + estimated wage inflation
Indirect Labour cost ratio 0.1 Estimate based on Powell’s c-Si cost model [8]
Floor space ratio (total/footprint) 3
Building cost per m2 1000 Estimate
Building and Facility maintenance rate 4% of capex per year Estimate
Electricity Cost US$0.08 / kWh Goodrich et al. [7] advanced scenario
Electricity for Services 1 kWh / tool kWh Exhaust, cooling water, Air con

information may be shared with the institute. However confidentiality agreements usually mean that
such data and the resulting analysis cannot be published. In this fast changing industry, economies of
scale and incremental improvements to processes and performance can quickly change the cost analy-
sis results so that such cost analysis work can quickly become outdated. Commercial R&D teams have
an advantage in this area, being linked to manufacturing companies, as cost data is usually available
for them to make more informed analysis and decisions.

For production processes that vary from the industry standard, the toolset costs (particularly at
high volume production) may not be known. It may be possible to obtain the price of a single lab or
pilot production tool, but this would not reflect the real cost of production when scaled up. Again,
institutes are at a disadvantage here, in that equipment vendors are unlikely to provide accurate cost
data without the prospect of a tool sale.

The cost of the incoming wafer is approximately half of the total cost of producing a cell. In this
model, we have not modelled the cost of producing polysilicon, and transforming this into an ingot
and then wafering. Instead we have taken 6 months of historical average mono wafer price data from
Energytrend [9] from April, 2017 to Sept, 2017. We have used the average, low and high values as
the parameter range for this material cost, as shown in Table 2.

The Al-BSF sequence is the current industry standard process. There exists some independent
analyses of manufacturing cost for this sequence that are by nature less accurate that the “real” data
from manufacturers, such as Powell et al. [10]. However this work was published in 2015, and has
cost estimates far higher than the current prices in the market.

The PERC process has been analysed by Woodhouse et al. [11] (paper in preparation). They
communicated with manufacturers to estimate the cost of setting up state of the art manufacturing
lines in wafer, cell (PERC) and module manufacture. With this data, they calculated the cost of
production, and cross checked with commonly quoted metrics such as staff levels and electricity usage
per unit of production. We have taken the summary cost data breakdown from that study as at May,
2017, which assumed 21.5 % cell efficiency, and translated this to parameters suitable for input into
the cost model.

In order to generate the parameters used in our model, we had to make a number of assumptions,
outlined here. The Woodhouse et al. summary cost data had a single value for depreciation that
included the tool itself (7 year depreciation time) and facility/building (20 year depreciation time).
We matched this depreciation value by modelling a value for tool cost, and a value for installation
cost (being 15% of the tool cost), and zero floor space (and cost) for the building. The Woodhouse et
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al. cost data showed average costs per process (in $/W), so to estimate the cost of each process tool
we assumed a nominal 3200 wafer/h tool capacity. We also translated all costs into area related costs
(i.e. $/cell or $/module) in order to separately analyse the impact of cell and module performance
on cost.

With regard to uncertainty, as the Woodhouse et al. data is based on discussions with suppliers
and manufacturers and not firm quotes for multiple tools as would be required to set up a factory, we
have used uncertainty bounds of ±30 % per tool cost, electricity usage and material costs and ±5 %
for the tool installation cost.

The Woodhouse et al. data was for a PERC sequence, so to estimate the Al-BSF sequence costs we
extrapolated that the tool to deposit a single side front SiN layer would be 70% of the cost and would
use 50% the materials of the double sided SiN tool. We also estimate that removing the front screen
print step would reduce the cost of the printer/drier by 20% and save 50% of the paste costs.

The LDSE process is based on UNSW experience, and is similar to what was developed and im-
plemented by Suntech in collaboration with UNSW in the “Pluto” Technology. UNSW has some cost
estimates for the LDSE sequence that were developed in collaboration with industry partners, with
some results of that analysis published by Edwards [12]. From this analysis we have extracted the cost
of the LDSE specific steps (formation of an oxide layer, laser doping and plating) for use in our model.
The most recent 2014 data from the UNSW model has been revised for changes in the capital cost,
reflected elsewhere in the PV industry over the past 5 years, and to account for expected economies
of scale from pilot production (80MW) to full scale manufacturing (>400MW). Specifically we have
assumed that capital costs are 70% (uncertainty range 50% to 90%) of the 2014 value. For material
costs, we have been very conservative, assuming that the costs are unchanged, but with an uncertainty
range of ±50%. Whilst further work could be done to refine these cost estimates, this has not been
done in this study, and even with these large uncertainty bounds, we have determined that refining
these costs is not critical to the analysis. The 2014 UNSW cost analysis did not include the improved
anchor points process which we have assumed in this work. So we have assumed a 20% cost premium
on the laser system cost to model the requirement for two laser processes within the same tool.

The Advanced Hydrogenation processes are based on discussions with equipment suppliers via the
University of New South Wales Solar Industrial Research Facility (SIRF), where indicative single unit
pricing was obtained [13]. We have taken these estimates, and projected an uncertainty range for
purchasing multiple tools for a production line of 500MW.

The detailed parameters including the uncertainty ranges that were used in this study can be found
in Tables S4, S5 and S6.

S2.2 Cell Performance

The various improved sequences defined in Table S2 generally increase the cost of production of each
cell or module (the per unit area cost). This additional cost must be offset by an improvement in
efficiency in order for a technology to have a lower cost per unit power ($/W) and higher selling price
for the technology to make commercial sense.

Whilst some of these sequences have been successfully implemented in high volume production,
and the performance improvement can be assessed, some sequences have only been tested in a lab
or pilot production. We have estimated the expected cell efficiency performance as shown in Table 1.
Because of the uncertainty in the actual performance gain should each sequence be established in
commercial production, a Low and High range of efficiency gain is estimated and used in the Monte
Carlo uncertainty analysis.
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Table S4 Equipment Cost Input Assumptions and Uncertainty Ranges - Cost. These are all assumptions for
a single production tool. The Tool Cost includes purchase and installation, facility cost includes purchase and
installation of support services such as electricity, compressed air, electricity and chemical delivery. Floor
space is the actual footprint of the equipment, which is used to calculate the size and cost of the building

Equipment Tool Cost US$M Facility Cost (%
of Tool Cost)

Floor space
m2

Spare Parts (%
Capex / year)

Electricity Usage
(kW)

Reference

Wafer Inspection 0.671 (0.469-0.872) 15 (10-20) 0 (0-0) 8 (4-12) 33 (23-43) [11 ]
Wafer Etch Bath 0.766 (0.536-0.996) 15 (10-20) 0 (0-0) 3 (2-4) 58 (40-75) [11 ]
Diffusion Furnace 2.299 (1.609-2.989) 15 (10-20) 0 (0-0) 4 (2-6) 82 (58-107) [11 ]
Rear etch bath 1.629 (1.14-2.117) 15 (10-20) 0 (0-0) 4 (2-6) 41 (29-53) [11 ]
Oxidation Furnace 0.632 (0.541-0.722) 9 (5-14) 0 (0-0) 5 (3-7) 150 (100-200) [12 ]
PECVD SiN - Single Side Process-
ing

1.274 (0.892-1.656) 15 (10-20) 0 (0-0) 3 (2-4) 52 (36-67) [11 ]

PECVD SiN - Upgrade to two
sided processing

0.546 (0.382-0.71) 15 (10-20) 0 (0-0) 3 (2-4) 22 (16-29) [11 ]

Rear AlOx passivation Tool 3.161 (2.213-4.11) 15 (10-20) 0 (0-0) 5 (2-8) 90 (63-118) [11 ]
PERC Laser 1.437 (1.006-1.868) 15 (10-20) 0 (0-0) 2 (1-3) 74 (52-96) [11 ]
Screen Printer (Additional front
print

0.134 (0.094-0.174) 9 (5-14) 0 (0-0) 5 (3-7) 13 (9-17) [11 ]

Screen Printer (2 prints) 0.536 (0.376-0.697) 15 (10-20) 0 (0-0) 2 (1-3) 53 (37-68) [11 ]
Dopant Spray Coater 0.253 (0.217-0.289) 10 (5-15) 5 (4-7) 5 (3-10) 20 (15-25) [12 ]
Doping Laser 0.583 (0.5-0.666) 5 (3-10) 10 (5-15) 10 (5-15) 5 (3-20) [12 ]
Plating Tool 2.429 (2.082-2.776) 20 (10-30) 40 (30-60) 10 (5-15) 150 (100-200) [12 ]
Sinter Furnace 0.359 (0.308-0.411) 10 (5-15) 20 (15-30) 5 (3-7) 15 (10-30) [12 ]
Hydrogenation Laser 0.72 (0.64-0.8) 10 (5-15) 10 (8-11) 5 (3-7) 20 (15-25) [13 ]
LED Hydrogenation 0.27 (0.24-0.3) 10 (5-15) 13 (11-15) 5 (3-7) 104 (93-116) [13 ]
Hydrogenation Firing Furnace
Upgrade

0.08 (0.055-0.103) 10 (5-16) 0 (0-0) 5 (3-7) 47 (33-61) [13 ]

Firing Furnace 0.287 (0.201-0.374) 15 (10-20) 0 (0-0) 9 (4-14) 115 (81-150) [11 ]
Cell test, sort and package 0.766 (0.536-0.996) 15 (10-20) 0 (0-0) 7 (4-10) 58 (40-75) [11 ]

Table S5 Equipment Cost Input Assumptions and Uncertainty Ranges - Throughput and Staff. The throughput
is the average during non-maintenance time. During normal tool operation, the specified number of operation
staff are required to operate, load and monitor the equipment. During maintenance time, the specified number
of maintenance staff are required to conduct preventative maintenance or repair

Equipment Throughput Units Down Time (%) # Staff (operation) # staff (maintenance) Reference
Wafer Inspection 3200 (3040-3360) wafer/h 2 (1-5) 4 (3-5) 2 (1-3) [11 ]
Wafer Etch Bath 3200 (3040-3360) wafer/h 4 (2-6) 2 (1-3) 2 (1-3) [11 ]
Diffusion Furnace 3200 (3040-3360) wafer/h 3 (2-4) 1.5 (0.5-2.5) 2 (1-3) [11 ]
Rear etch bath 3200 (3040-3360) wafer/h 4 (2-6) 2 (1-3) 2 (1-3) [11 ]
Oxidation Furnace 3000 (2400-3600) wafer/h 3 (2-4) 0.5 (0.25-1) 2 (1-3) [12 ]
PECVD SiN - Single Side Pro-
cessing

3200 (3040-3360) wafer/h 6 (4-8) 2 (1-3) 3 (2-4) [11 ]

PECVD SiN - Upgrade to two
sided processing

3200 (3040-3360) wafer/h 6 (4-8) 1 (0.5-1.5) 3 (2-4) [11 ]

Rear AlOx passivation Tool 3200 (3040-3360) wafer/h 6 (4-8) 3 (2-4) 3 (2-4) [11 ]
PERC Laser 3200 (3040-3360) wafer/h 5 (3-10) 3 (2-4) 2 (1-3) [11 ]
Screen Printer (Additional
front print

3200 (3040-3360) wafer/h 12 (6-14) 1 (0.5-1.5) 0 (0-0) [11 ]

Screen Printer (2 prints) 3200 (3040-3360) wafer/h 12 (6-14) 2 (1-3) 2 (1-3) [11 ]
Dopant Spray Coater 3000 (2400-3600) wafer/h 3 (2-5) 1 (0.5-2) 2 (1-3) [12 ]
Doping Laser 1200 (960-1440) wafer/h 5 (3-8) 1.5 (1-2) 2 (1-3) [12 ]
Plating Tool 2400 (1920-2880) wafer/h 4 (2-6) 1 (0.5-2) 2 (1-3) [12 ]
Sinter Furnace 2400 (1920-2880) wafer/h 3 (2-4) 0.5 (0.25-1) 2 (1-3) [12 ]
Hydrogenation Laser 3600 (3240-3960) wafer/h 5 (3-10) 0.5 (0.25-1) 2 (1-3) [13 ]
LED Hydrogenation 3600 (3240-3960) wafer/h 5 (3-10) 0.5 (0.25-1) 2 (1-3) [13 ]
Hydrogenation Firing Fur-
nace Upgrade

3200 (2880-3520) wafer/h 3 (2-4) 0 (0-0) 1 (0-2) [13 ]

Firing Furnace 3200 (3040-3360) wafer/h 3 (2-4) 1 (0.5-1.5) 2 (1-3) [11 ]
Cell test, sort and package 3200 (3040-3360) wafer/h 5 (3-7) 3.5 (2.5-4.5) 2 (1-3) [11 ]

For sequences A (Al-BSF) and B (PERC), data was taken from the 2017 ITRPV report [1]. Specifi-
cally, for p-type mono wafers, it predicts a 20% cell efficiency for Al-BSF and 21.2% cell efficiency for
PERC processing in 2017.
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Table S6 Material Cost Input Assumptions with Uncertainty Ranges - the usage assumptions are extrapolated
from the data sources and estimated wastage rates for each process. Cost information taken from the data
sources is adjusted to account for the passage of time and purchase volumes.

Process Material Unit Usage (Unit/m2) Cost (US$/unit) Ref
Wafer Cost p-type wafer wafer 1 (1-1) 0.798 (0.778-0.813) [9 ]
Texture and damage etch Texture Etch chemicals per wafer 1 (1-1) 0.019 (0.013-0.024) [11 ]
Emitter Diffusion Diffusion chemicals per wafer 1 (1-1) 0.053 (0.037-0.069) [11 ]
PSG Removal and Edge Isolation Rear Etch chemicals per wafer 1 (1-1) 0.036 (0.025-0.046) [11 ]
PECVD of SiNx:H (Front Only) PECVD chemicals per wafer 1 (1-1) 0.02 (0.014-0.026) [11 ]
PECVD of SiNx:H (Rear Only) PECVD chemicals per wafer 1 (1-1) 0.02 (0.014-0.026) [11 ]
Rear passivation AlOx Rear SiN/AlOx gases per Wafer 1 (1-1) 0.005 (0.004-0.007) [11 ]
Screen Print 2 rear layers Rear Pastes per wafer 1 (1-1) 0.046 (0.032-0.06) [11 ]
Screen Print 2 rear layers Screen Print Screens per 1k wafer 0.001 (0.001-0.001) 1.03 (0.719-1.34) [11 ]
Screen Print front Ag Front Ag paste per wafer 1 (1-1) 0.046 (0.032-0.06) [11 ]
Phosphorous spray coat Phosphoric Acid mL 0.4 (0.32-0.48) 0.005 (0.003-0.008) [12 ]
Ni/Cu/Ag Plating Ag plating Solution per wafer 1 (1-1) 0.031 (0.015-0.046) [12 ]
Ni/Cu/Ag Plating Cu plating solution per wafer 1 (1-1) 0.004 (0.002-0.005) [12 ]
Ni/Cu/Ag Plating Ni plating solution per wafer 1 (1-1) 0.008 (0.004-0.011) [12 ]

For sequence C (LDSE), since this process is not in commercial production, it is more difficult to
estimate the performance of this sequence. In early production the Pluto process at Suntech was better
than the standard Al-BSF sequence (2 months of production data), with a 5 %rel increase in current, a
2 %rel increase in voltage and 3 %rel increase in FF to achieve overall a 11 %rel (1.8 %abs) increase in
efficiency [2]. However with current production cell efficiencies of Al-BSF close to 20 %abs compared
to the 16.5 % baseline at the time, the room for improvement is much reduced. We estimate that an
improvement of 1 %rel in voltage and 1.5 %rel in current with an unchanged fill factor is possible in
production, which would result in an overall cell efficiency boost of around 0.5 %abs. As there is some
uncertainty in this, in the model we have assumed a cell efficiency boost of 0.4 %abs, and uncertainty
range of ± 0.1 %abs.

For Sequence D (PERC + LDSE), we have estimated that compared to the PERC Sequence B, we
would have a 0.9 %abs increase in cell efficiency. This is based firstly on expected higher voltages. In
development work of PERC + LDSE on p-type mono wafers [3], batch average voltages of 696 mV
were obtained. This was for a modified industrial LDSE process (Suntech Power Pluto) on the front
surface and a PERC structure on the rear that is expected to give similar performance to the current
standard PERC process used in industry. In that work, a side by side comparison between PERC only
and PERC + LDSE was not carried out, making a direct comparison difficult. However in 2016 Sunrise
verbally reported an average voltage for PERC production cells of 670 mV[14]. We thus expect that in
commercial production, the Voc can be enhanced by 3.7 %rel by adding the LDSE process to a PERC
cell. The current would also be improved, because LDSE contact lines are thinner at 30 µm compared
to standard screen print lines at 45 µm. We estimate that a 1 % increase in Isc is reasonable, and
that fill factor should be unchanged by the LDSE process. These improvements can be calculated to
contribute a 0.9 %abs to the cell efficiency. In our model we use an uncertainty of -0.2 + 0.1 %abs.

For Sequences E (PERC + Laser H), F (PERC + LED H) and G (PERC + Furnace H), these each
implement the UNSW advanced hydrogenation in different ways, however we expect that the hydro-
genation performance would be equivalent to each other, though this would need to be checked with
extended production testing. Some performance improvements for the Hydrogenation process have
been reported by Hallam et al., where tests on CZ PERC cells showed that hydrogenation delivered
both an as-produced efficiency gain as well as reducing the CID degradation. These two factors com-
bined averaged 1.1 %abs. For one manufacturer, the data was presented showing that the as-produced
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efficiency gain was 0.2 %abs and the avoided degradation was 0.8 %abs [5]. For the purposes of cell
and module cost, we have only included the as-produced efficiency improvement, and have set this at
0.2 ± 0.1 %abs. This efficiency improvement is varied for each sequence independently to allow any
impact of performance differences between these processes to be understood.

The CID effect is analysed for its market effect as explained in Section S2.5.

S2.3 Module Manufacturing Costs and Module Performance

Cells must be assembled into modules, which includes serial and parallel electrical interconnection
and encapsulation. There is significant research into alternative methods of module formation that
can save cost or increase the power of the modules. As our focus in this study is the cell fabrication
steps, but since we also need to consider the market price of completed modules, it is necessary to
estimate the module manufacturing costs. Because there is scope for significant change in this area,
we have modelled the total module manufacturing cost (including materials, equipment depreciation
and running costs, labour and materials) as a single uncertain variable CTMCosti.

This number was extracted from the Woodhouse et al. study [11], where module manufacture
is estimated at 0.13$/w for a 310W module (i.e. $40.30/module), to which we have applied an
uncertainty range of ±10%. This is consistent with the ITRPV report [1], which estimates that cell
to module fabrication contributes 37% of the total cost of US$0.37/W in Q1 2017, which can be
calculated as $0.137/W.

The moduling process also has an impact on the performance of the solar cells. Generally there
is a loss of power from effects such as the additional reflection from the front glass, and shading
from the interconnection [15]. For the purpose of this study, we have modelled this effect as a
variable CTMPoweri, a ratio that also varies with uncertainty. We have used the same definition as
the ITRPV [1] - “the total power output of the module divided by the total power output of the cells”.
The ITRPV report estimates the 2017 CTM ratio for mono c-Si modules at 98.5%. We have assumed
this value with an uncertainty of ±0.5 %abs. The reason for this variation is that this CTM factor can
change depending on the module techniques used. For example, adding an anti-reflection coating on
the front glass will increase this factor as well as increasing the cost. As our focus is on cell fabrication
differences, we have assumed that this factor is identical for each production sequence.

Note that since we are modelling CTMPoweri as the same for each Sequence, this neglects the
possible effect of different spectral responses of each Sequence compared to each other. In particular,
a selective emitter sequence would be expected to have an improved blue response, but blue light
is often more strongly absorbed by the front glass. Thus a selective emitter cell would likely have a
lower CTMPower parameter than a standard (homo) emitter cell. In our study we have assumed that
such an effect is within the noise of the efficiency boost between Sequences (Table 1). The assumed
range values for CTMPower are shown in Table 2.

S2.4 Module Price including Power Premium Calculations

To estimate BaselineSellingPricei for a 280W module, we have taken 6 months of historical average
spot prices for mono c-Si modules from April to Sept 2017 from EnergyTrend [9]. The average
($0.381/W), low ($0.375/W) and high ($0.385/W) values of this data were used as the Nom, Low
and Hi values for this parameter.

We expect that a selling price premium can be obtained for higher module efficiency, since higher
efficiency modules allows a more cost effective installed system cost (in $/W) where area related costs
(such as land and mounting hardware) are significant. We also see this in practice, where for example
mono c-Si modules consistently sell for higher prices (in $/W terms) than multi c-Si modules. It is
difficult to calculate and justify a specific price premium on the basis of installed system cost, as this
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is highly dependent on the specifics of each installation. However we have calculated the weekly
price difference between mono and multi c-Si modules over a 6 month period [9] in c/W per Watt of
additional module power (average 0.09, min 0.08, high 0.11). These ranges are used to generate the
PowerPremiumi parameters.

S2.5 CID Free Premium Calculations

The CID degradation effect has been shown to be 4%rel in some tests with commercially produced
cells [5]. This degradation effect occurs gradually in the field, and then recovers. The exact timescale
of both developing and recovering this effect depends strongly on the installation conditions. For
example Lee et al. [16] suggests that leaving modules at open circuit in the field can recover CID
within a period of one week, whilst modules installed “in operation” did not recover after a period
of one month (although the modules were showing signs of slow recovery). Hallam et al. [17] have
shown by modelling that it is possible to accelerate the degradation and recovery so that full recovery
occurs after a period of a few weeks to a few years if the modules are left in the field at open circuit,
and depending on the location and season of installation. However this requires the modules to be
kept at open circuit while in the field, and is not practical to implement.

This uncertainty in the degradation makes it even more difficult to estimate the price premium a
module supplier could expect from having a “CID Free” module. The size of this price difference will
have a significant impact on the benefit to the manufacturer of this process. There are a number of
ways to estimate the market impact of a CID-free module.

1) A branding effect that is not directly related to any specific metric. In other words, by saying
that a module is CID free (and being able to back this up with test results), this increases the value
of the brand by being judged as higher quality. The customer then will be willing to pay a price
premium. This price premium may change over time as attitudes to CID change. E.g. if CID is seen by
the market as a huge problem, this premium will be high. If it is seen as a minor inconvenience, then
this premium may be low or non-existent. This effect may also be tempered by other brand related
issues, such as the size and reputation of the manufacturing company.

2) De-rating module power by manufacturers. If manufacturers are concerned that their modules
are not seen to be defective, they may choose to de-rate their module name plate power to account
for CID effects. For example, module warranty conditions may allow for say 2.5% power drop within
the first year, followed by a 0.7% drop each year subsequently (an example of such a warranty can be
found in [18]). If any manufacturer is concerned that CID effects threatens to cause module returns,
it may choose to de-rate the modules by say half the expected CID amount (2%rel). Another common
metric used by end users is the “Performance Ratio”, which is the number of kWh/year generated by
a PV system compared to the amount expected if the modules maintained their rated power output.
Derating modules that are CID affected would ensure that the modules maintained a high Performance
Ratio. Any such derating to ensure high performance ratio or to ensure that the modules stay within
the warranty power output conditions would result in a lower selling price and therefore margin to
the manufacturers.

3) Customers willing to pay higher prices for CID-Free modules based on the expected generated
electricity increase of their PV systems. This is a decision or analysis done by the module customers.
If they are faced with a decision of whether to purchase “CID Free” modules or “Standard” modules,
they may wish to calculate the expected effect on their system performance and how this impacts
their financial performance. In that case, they need to estimate the total power loss during the life
of the module. One way to assess this is in calculating the impact on LCOE. The LCOE calculates
the total costs of the system over its lifetime, and divides this over the energy output over its lifetime
to calculate the cost per unit energy (e.g. $/kWh) over its lifetime. There are many complications
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to this calculation, such as the use of discount rates on the value of money, etc. For a very simple
“back of the envelope” analysis we can say that if a module is expected by the customer to provide
say 3% lower power output over the lifetime of the system compared to a CID-Free module, then the
customer would calculate that the total output energy of the system is reduced by 3%. As PV system
costs are dominated by up front capital costs, and as the PV modules make up approximately half of
the total system cost, then the customer might consider a discount of 6% on CID-affected modules
to be LCOE cost neutral. Note that this analysis depends strongly on the expectation of the customer
of the change in power output. In the paper we also discuss the possible effect on “Bankability” of
modules subject to degradation.

These three factors will impact the market price of such CID-Free modules, but the exact value to
the market is not clear, and may also change over time as the understanding and attitude of manufac-
turers and end users changes. We have included a “CIDFreePricePremium” to Sequences E, F and G
within our model, applying an uncertainty range within our Monte Carlo analysis. The nominal value
in the model is 1 %rel with a low value of 0.5 %rel and a high value of 2 %rel as shown in Table 2.

S3 Cost Model Details

S3.1 Calculation of Process costs using Monte Carlo analysis

In the paper, a high level formula for Process Cost is provided (Equation 1). To explain in detail how
this is derived, we have included a spreadsheet as additional supplementary material, which shows
how the model generates the parameter values for each iteration, and then combines them to calculate
the various cost components, and calculates the Normalised Uncertainty.

One important simplification in this model is that each production tool is assumed able to run at full
capacity (less maintenance time) when calculating the depreciation and running costs. This neglects
the normal factory requirement to tune the throughput of tools to closely match each other in multiple
parallel lines. Because of the random nature of the Monte Carlo analysis, if this complication were
to be included, it would result in wide variations in tool utilisation rates which would add variation
to the results. By making this simplification, we are effectively assuming that for each iteration, a
tool’s cost per unit of production is fixed, but the actual cost and throughput of each tool can be
optimised to match the rest of the factory. This simplification has some reflection in reality, where
even though processes and technologies change over time, tool manufacturers will tend to design and
offer production tools to match multiples of common industry standard throughput values, such as
3600 wafer/h.

The formula for generating iterations using the Log-Normal distribution are shown in Chang et
al. [19], duplicated here in Equations 1, 2 and 3.

σH = ln(YHigh/YNom)/1.28 (1)

σL = ln(YNom/YLow)/1.28 (2)

Yi =

{
YNom · exp(σH ·Zi) if Zi > 0
YNom · exp(σL ·Zi) if Zi < 0 (3)

This distribution does not always result in smooth distribution curves, with the possibility of dis-
continuities at the nominal value, as for example shown in Figure S1. This is because of the use of a
two-half style distribution, where the two halves may not match at the median value. This can cause
some lines in the scatterplots observed in Figure 5.
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Figure S1 Example two-half log normal probability distribution with Low = 2, Nom = 3 and High = 5

S3.2 Impact of the number of Monte Carlo Iterations

Figure S2 shows the impact of changing i. Equivalent distributions to Figure 4a of the paper are
shown with increasing i. As i increases, the smoothness of the distributions improves, but at the same
time the computation time increases. At i=500, there is noticeable noise in the distribution graph
(Figure S2a), which results in some variation in the extracted parameters if the simulation is run
multiple times (Figure S2b). The noise in the distribution graph and the variation in the extracted
parameters reduces significantly as i increases. i must thus be chosen to ensure that the variation of
the extracted values should be much lower than the uncertainty we are attempting to measure with
the Monte Carlo analysis. As discussed in the paper, i = 5000 was used to compute the model during
data collection, since the simulation was run many times a day. i = 50000 was used once the data
was finalised and to prepare metrics and figures for this paper.

S3.3 Modelling yield

Yield was been assumed at 100% in previous work [20]. Yield is a complex topic, as it comprises
of a number of components. One factor, such as mechanical yield, is easy to measure in a running
factory. However electrical yield is related to the cut-off of acceptable efficiency for a production line,
and aesthetic yield may be based on a number of different criteria. Either of these requirements can
change over time, changing the yield value even if there is no change in the production distribution.

In this work, we have included the average production cell fabrication yield as a randomly gen-
erated variable for each sequence. The purpose of this is to understand the relative sensitivity of the
cost estimates to this factor, rather than as a prediction of factory yield based on experimental data.

It is not possible to use the two half log-normal distribution directly (Equations 1, 2 and 3) to gen-
erate YieldSeq,i from the Nominal, Low and High values given in Table 1, because this would generate
yield values greater than 100%. To deal with this issue, we first transform each yield range parameter
(e.g. YieldSeq,Nom) into an equivalent Mean Time Between Failure (MTBF) parameter in units of pro-
duction (Equation 4). We then generate i values of MTBF (MTBFSeq,i) using a two half Log Normal
distribution. An example distribution of the generated MTBF values is shown in Figure S3a. Each of
the i generated MTBF values is then transformed back into a percentage yield value (Equation 5), to
give the i Yield values used in the cost calculations. An example distribution of the generated YieldSeq,i
is shown in Figure S3b.

MT BFSeq,Nom =
100

100−YieldSeq,Nom
(4)
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(a) (b)

(c) (d)

(e) (f)

Figure S2 Impact of the selection of the number of iterations (i) on the Monte Carlo analysis. (a), (c) and
(e) show example distributions similar to Figure 4a, but with varying i. (b), (d) and (f) show the distribution
of extracted parameters from running the Monte Carlo Simulation 100 times for each selection of i. Note that
these runs were completed independently of the final run and graphs shown in the paper, and so (e) does not
match exactly with Figure 4a.
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(a) (b)

Figure S3 Example generated distributions of a) Average factory MTBF and b) Average factory yield

(a) (b)

Figure S4 Distribution of a) Gross Margin and b) Operating Margin for Seq A-D, as a ratio of revenue. For the
Operating Margin calculations, a fixed overhead assumption of 10% is used

YieldSeq,i = 100− 100
MT BFSeq,i

(5)

S3.4 Margin Calculations

In the paper we focus on gross margin, which is the selling price less manufacturing costs. An alterna-
tive metric is the operating margin, which includes overhead costs such as R&D, sales and administra-
tion costs. We have not modelled these overheads in detail, but can calculate the operating margin by
applying an assumed overhead of 10% of revenue. In Figure S4 we show the distribution of the gross
margin and the operating margin (both expressed as a ratio to revenue). These distributions have a
similar range to that of recently reported industry margins as described in a SunShot report [21].
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Table S7 Key parameters whose uncertainty causes the most variance in the margin per module of Sequence
D

Parameter Unit Uncertainty Range Variance (%)
CTM Cost $/module 36.02 - 43.97 37
Cell Efficiency %abs 21.8 - 22.34 19
Power Premium c/W / module W 0.08 - 0.13 17
Baseline Module Price $/W 0.37 - 0.38 6
CTM Ratio 0.97 - 0.98 4
p-type wafer (122) $/m2 28.5 - 29.8 3
Ag plating Solution (110) $/m2 0.57 - 1.7 2
All other 12

S4 Additional Results

S4.1 Al-BSF, PERC and LDSE

In the paper, we show the contribution to variation of the various input parameters on the MarginDiff
parameter. It is also possible to conduct the Contribution to Variance analysis on each Sequence
separately. For example here in in Table S7 is the contribution to variance table for MarginSeqD. We
see here that the uncertainty in the cost of the upstream and downstream steps in the value chain
are particularly important, as well as the Cell Efficiency and the expected Power Premium. Further
work to reduce the uncertainty in those costs and parameters will reduce the distribution width of this
sequence.

However in this work we are more interested in understanding the relative merits of one sequence
compared to another, and the upstream and downstream processes are in this analysis common to
each sequence. So by using the Simultaneous Monte Carlo analysis and applying the contribution to
variance analysis on MarginDiff , as we have discussed in the paper, we can clearly see the parameters
that most impact the commercial viability of implementing a process change.

S4.2 Additional Results - Advanced Hydrogenation

In Figure S5 we see the equivalent graphs to Figure 6, but showing the absolute difference instead of
the percentages.

In the paper, Figure S5 compares three hydrogenation sequences (E, F and G) to PERC (Sequence
B). This showed that each of the Hydrogenation sequences has a similar improved margin compared
to the PERC baseline. In Table 5 the contribution to variance table on MarginDiffCIDSeqE,SeqB was
provided. Here, in figure S6, we show visually the impact of the four most significant variables.

In Figure S7 we additionally compare in more detail the three Advanced Hydrogenation sequences
(E, F and G) with each other. First, we compare the margin of Sequences F and G compared to
Sequence E (Figure S7a). This shows that within the uncertainties of this study, each Hydrogenation
sequence is nearly indistinguishable from the other, with Sequence G (Furnace Hydrogenation) on
average the best (by a very small amount) sequence. Using the Contribution to Variance analysis on
the parameter MarginDiffCIDSeqG,SeqE , we see that the main causes of uncertainty in whether Furnace
Hydrogenation is better than Laser Hydrogenation are the Efficiency Difference (71% of variation,
Figure S7b) and the Yield difference (29% of variation, Figure S7c). All other factors contribute
less than 1% to the variation. This shows us that the most important factor in choosing between
Hydrogenation methods is the performance rather than the actual cost of the hydrogenation processes.
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(a) (b)

(c) (d)

Figure S5 Cost distribution of the various Hydrogenation processes compared to the baseline PERC only
sequence in a)US$/module b) module cost US$/W, c) margin per module in US$/module and d) margin per
module in US$/module assuming a variable price premium for being CID Free
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(a) (b)

(c) (d)

Figure S6 Scatter plots of key variables and their impact on the margin improvement of Sequence E compared
to Sequence B, assuming a variable price premium for CID-Free modules
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(a) (b)

(c)

Figure S7 a) Compares Seq F and Seq G with Seq E as the baseline. b) and c) show the impact of the relative
efficiency gain and relative yield on the MarginDiff SeqG,SeqE
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