Supplementary Information

Efficient Hydrogen Generation from Water using Nanocomposite flakes based on Graphene and Magnesium.

Bartali R.1*, Speranza G.1, K.F.Aguey-Zinsou2, Testi M.1, Micheli V.1, Canteri R.1, Fedrizzi M.1, Gottardi G.1, Coser G.1, Crema L.1, Pucker G.1, Setijani E.1,2, and Laidani N1.

1) Fondazione Bruno Kessler, Center Materials and Microsystems Via Sommarive 18, 38100 Italy.

2) MERLin, School of Chemical Engineering, The University of New South Wales, Sydney, Australia

Supplementary Note 1: S1 Sketch of Deposition of Mg on G by plasma sputtering

Supplementary Note 2: S2 Hydrogen generation using Mg/G exposed to Nitrogen and Air

Supplementary Note 3: S3 SEM and EDX

Supplementary Note 4: S4 XRD spectra of adhesive tape Mg/G after the reaction with water

Supplementary Note 5: S5 XPS Survey spectra, Atomic concentration of Mg C and O on Mg/G before and after the immersion in water by XPS

Supplementary Note 6: S6 Video of H\textsubscript{2} Bubble produced by Mg/G in water

Supplementary Note 7: S7 Video of H2 generation and energy production using a Fuel cell
Supplementary Note 8: S8 Spectra of Air lab by PTRMS

Supplementary Note 9: S9 Energy density calculation of Mg/G powder deposited at 60 min.

Supplementary Note S10 Energy density of Mg/G and other technologies to store the energy

S1 Sketch of Deposition of Mg on G by plasma sputtering
S2 Hydrogen generation using Mg/Gr exposed to Nitrogen and Air

![Graph showing hydrogen generation over time with different glove bag gases](image-url)
S3 SEM and EDX

The EDX analysis of Mg/G (30 min deposition). The peak of magnesium reveals that the primary material present on the surface of G is magnesium. Carbon peak is the signal due to the G substrate; we detected carbon because the scanning depth of EDX is quite high (> 1 micron) and because the Mg surface is not entirely uniform.
S4 XRD spectra of Mg/G after the reaction with water

X-Ray diffraction pattern of sample holder [a], Graphene/Magnesium samples [b] and subtraction curve [c]
S5 Survey XPS spectra, and Atomic concentration of Mg C and O on Mg/G before and after the immersion in water by XPS
Table 1. The surface chemical composition of Mg/G (60 min) as determined by XPS analysis before and after the reaction of Mg/G with water.

<table>
<thead>
<tr>
<th></th>
<th>Binding Energy eV</th>
<th>At% as-prepared</th>
<th>At% After reaction With Water</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1s</td>
<td>73.84</td>
<td>61.37</td>
<td></td>
</tr>
<tr>
<td>C-C</td>
<td>284.35</td>
<td>60.44</td>
<td>47.9</td>
</tr>
<tr>
<td>C-O C-OH</td>
<td>286.3</td>
<td>8.75</td>
<td>5.77</td>
</tr>
<tr>
<td>C=O</td>
<td>288.08</td>
<td>1.95</td>
<td>2.49</td>
</tr>
<tr>
<td>π-π*</td>
<td>290.54</td>
<td>5.7</td>
<td>5.21</td>
</tr>
<tr>
<td>O1s</td>
<td>17.61</td>
<td>29.24</td>
<td></td>
</tr>
<tr>
<td>Mg(OH)₂</td>
<td>530.92</td>
<td>6.86</td>
<td>9.38</td>
</tr>
<tr>
<td>CO-Mg(O)</td>
<td>532.34</td>
<td>9.08</td>
<td>13.59</td>
</tr>
<tr>
<td>H₂O</td>
<td>534.19</td>
<td>1.68</td>
<td>6.26</td>
</tr>
<tr>
<td>Mg2p</td>
<td>8.54</td>
<td>9.39</td>
<td></td>
</tr>
<tr>
<td>Mg(OH)₂</td>
<td>50.1</td>
<td>4.38</td>
<td>4.35</td>
</tr>
<tr>
<td>Mg(O)</td>
<td>51.5</td>
<td>3.35</td>
<td>4.60</td>
</tr>
<tr>
<td>-</td>
<td>52.11</td>
<td>0.82</td>
<td>0.44</td>
</tr>
</tbody>
</table>
S6: Video of the H₂ bubbles produced by Mg/G in water

bubble hydrogen generation.avi

S7: Video of H₂ generation and energy production using a Fuel cell

S7 EES (2).avi
S8 Spectra of Air lab as determined by PTRMS
S9 Energy density calculations:

\[\text{Mg} + 2\text{H}_2\text{O} \rightarrow \text{Mg(OH)}_2 + \text{H}_2 \]
\[\Delta H_f = -354 \text{ kJ mol}^{-1} \]

The reaction needs for 1 mole H\(_2\) 2 mole of water and produce hydrogen gas and heat

A) Hydrogen production evaluation:

Mass of powder Mg Graphene

\[m_{\text{powder}} = 0.001 \text{ g} \]

H\(_2\) Gravimetric storage density

\[\rho_{\text{g/g}} = 3\% \]

Hydrogen evolution from powder

\[m_{\text{H}_2} = m_{\text{powder}} \times \rho_{\text{g/g}} = 3 \times 10^{-5} \text{ g} \]

Energy Balance:

\[\text{LHV}_{\text{H}_2} = 119 \text{ kJ/g} \]

Chemical energy in produced hydrogen:

\[E_{\text{H}_2} = \text{LHV}_{\text{H}_2} \times m_{\text{H}_2} = 3.57 \text{ J} \]

For a energy density based on powder of:

\[E_{\text{H}_2,\text{powder}} = \frac{E_{\text{H}_2}}{m_{\text{powder}}} = 3.57 \text{ kJ/g} \]

B) Heat production by Gr+Mg powder and water reaction
Based on the number of Mg moles reacted:

\[\text{Mg} + \text{H}_2\text{O} \rightarrow \text{Mg(OH)}_2 + \text{H}_2 \]

\[n_{\text{H}_2} = n_{\text{Mg}} \]

So, considering the previous H2 production, \(m_{\text{H}_2} \),

\[n_{\text{Mg}} = n_{\text{H}_2} = \frac{m_{\text{H}_2}}{\text{PM}_{\text{H}_2}} = 1.5 \times 10^{-5} \text{ moles} \]

Considering, Enthalpy of Mg and water reaction equals to \(\Delta H = 354 \text{ kJ/moles} \), it is possible to evaluate total heat released by chemical reaction of Hydrogen production,

\[E_{\text{heat}} = n_{\text{Mg}} \times \Delta H = 5.31 \text{ j} \]

So, from previous calculation it is possible to resume total output energy of reaction between Mg(Graphene) powder and water for a unit of mass:

\[E_{\text{heat powder}} = \frac{E_{\text{heat}}}{m_{\text{powder}}} = 5.31 \text{ kJ/g} \]

With a total energy balance of:

\[E_{\text{tot}} = E_{\text{heat powder}} + E_{\text{H}_2\text{powder}} = 3.51 \text{ kJ} + 5.31 \text{ KJ} = 8.81 \text{ KJ/gr} \]

C) Estimation of water consumption

The Stoichiometric quantity of consumed water by reaction is:

\[n_{\text{H}_2\text{O}} = 2 \times n_{\text{H}_2} = 3.2 \times 10^{-5} \text{ moles} \]

For a mass of:

\[m_{\text{H}_2\text{O}} = n_{\text{H}_2\text{O}} \times \text{PM}_{\text{H}_2\text{O}} = 54.045 \times 10^{-5} \text{ g} \]

And a total consumption for mass unit of powder of,

\[m_{\text{H}_2\text{O powder}} = \frac{m_{\text{H}_2\text{O}}}{m_{\text{powder}}} = 0.57 \text{ g}_{\text{H}_2\text{O/gpowder}} \]

Finally, considering also the water amount in the total energy balance, the density of energy from the powder (Mg+graphene) and water system is:

\[m_{\text{tot}} = m_{\text{H}_2\text{O powder}} + m_{\text{powder}} = 1.57 \text{ g} \]
for an energy density of,

\[\rho_{\text{Energy tot}} = \frac{E_{\text{tot}}}{m_{\text{tot}}} = 5.61 \text{ kJ/g} \]

Or considering only chemical energy released as H\(_2\) gas,

\[\rho_{\text{H2 tot}} = \frac{E_{\text{heat powder}}}{m_{\text{tot}}} = 2.23 \text{ kJ/g} \]

S10 Energy density of Mg/G and other technologies to store the energy

<table>
<thead>
<tr>
<th>Energy density</th>
<th>kJ/gr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compressed Hydrogen (700 atm)</td>
<td>150</td>
</tr>
<tr>
<td>Mg/Gr theoretical</td>
<td>14</td>
</tr>
<tr>
<td>Mg/Gr (this work)</td>
<td>3.5 (H(_2)) + 5.3 (Heat)</td>
</tr>
<tr>
<td>Lithium battery</td>
<td>1-2</td>
</tr>
<tr>
<td>Fly wheel</td>
<td>1</td>
</tr>
<tr>
<td>Ni-Cd</td>
<td>1</td>
</tr>
<tr>
<td>Lead acid battery</td>
<td>0.18</td>
</tr>
</tbody>
</table>