Electronic Supplementary Material (ESI) for Sustainable Energy & Fuels. This journal is © The Royal Society of Chemistry 2018

Electronic supplementary information

Enhanced Photo-Assisted Ethanol Electro-Oxidation Activity by Using Broadband Visible Light Absorption of Graphitic C₃N₄/BiOI Carrier

Jiayue Hu^{a,b}, Chunyang Zhai^b, Haifeng Gao^a, Lixi Zeng^{a,*}, Yukou Du^c, Mingshan

Zhu ^{a*}

^a Guangdong Key Laboratory of Environmental Pollution and Health,

School of Environment, Jinan University, Guangzhou 510632, P. R. China.

^b School of Materials Science and Chemical Engineering, Ningbo University, Ningbo

315211, P.R. China

^c College of Chemistry, Chemical Engineering and Materials Science, Soochow

University, Suzhou 215123, P. R. China

*E-mail: <u>lxzeng@jnu.edu.cn</u> (L.Z.); and <u>mingshanzhu@yahoo.com</u> (M.Z.).

Figure S1. TEM (A) and HRTEM (B) images of Pt/g-C₃N₄/BiOI.

Figure S2. CVs of Pt/g-C₃N₄/BiOI in 1.0 M CH₃CH₂OH + 0.5 M Na₂SO₄ solution at

a scan rate of 50 mV s⁻¹ under visible light illumination and dark environment.