Supporting Information

A dual-function photoelectrochemical solar cell which assimilates light-harvesting, chargetransport and photoelectrochromic nanomaterials in a tandem design

Ankita Kolay,^a Nathan Potts,^b Kripasindhu Sardar,^b Elizabeth A. Gibson,^b and Melepurath Deepa^{a,*}

^a.Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana 502285, India. E-mail: mdeepa@iith.ac.in

^bEnergy Materials Laboratory, Chemistry, School of Natural and Environmental Science, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom. Brunauer-Emmett-Teller (BET) surface area analysis and Barrett-Joyner-Halenda (BJH) pore size and volume analysis were performed under Nitrogen at 77.3 K, after degassing at 300 °C for 3 h. This analysis was performed on a Nova 2200e Quantachrome instrument.

Figure S1 Nitrogen adsorption-desorption isotherm for NiO.

Figure S2 Cyclic voltammograms of TiO₂, CdS, MoO₃, Au, NiO and In₂S₃ films deposited over FTO substrates.All plots were recorded in a 0.1 M KCl solution as electrolyte, with a Pt rod as the counter electrode and Ag/AgCl/KCl as the reference electrode, at a scan rate of 20 mVs⁻¹.

The HOMO (VB), LUMO (CB) and band gap values of different materials used in PECD fabrication were acquired from cyclic voltammograms and absorbance spectra using the equations provided below.

 $E_{red} = -4.5 \text{ eV} (\equiv 0 \text{ V versus NHE}) - (\text{Red. Peak (V) vs. Ag/AgCl/KCl} + 0.197 \text{ V})$ (1) $E_{ox} = -4.5 \text{ eV} (\equiv 0 \text{ V versus NHE}) - (\text{Ox. Peak (V) vs. Ag/AgCl/KCl} + 0.197 \text{ V})$ (2)

Material	Reduction peak / V vs. Ag/AgCl	Oxidation peak / V vs. Ag/AgCl	E_{red} (versus NHE) / eV = LUMO	Band Gap / eV	$E_{ox} (versus NHE) / eV \equiv HOMO$
TiO ₂	-0.571		-4.126	3.16	-7.286
CdS	-0.758		-3.939	2.29	-6.229
NiO		0.377	1.484	3.59	-5.074
In ₂ S ₃	-0.723		-3.974	2.22	-6.194

Table S1 Energy level positions of the photoanode and photocathode components.

Material	Peak / V vs. Ag/AgCl	E (versus NHE) / eV
Au	0.257	-4.954
MoO ₃	0.434	-5.131

Figure S3 Mott–Schottky plot of the In₂S₃ film.

Figure S4 Bode plot of the $NiO/In_2S_3-nS^{2-}/S_n^{2-}$ C-fabric half-cell, with NiO/In_2S_3 as the photoanode.

Table S2 Solar cell parameters of the 3-cells in a 1 M polysulfide gel electrolyte, exposed cell area: 0.12-0.15 cm², under 1 sun illumination (AM 1.5, 100 mW cm⁻²).

Cells	$V_{OC}(V)$	J _{SC} (mA cm ⁻²)	FF (%)	Efficiency (η %)			
TiO ₂ /CdS/Au/MoO ₃ –In ₂ S ₃ /NiO/C-fabric							
Cell 1	0.785	17.99	56.54	7.987			
Cell 2	0.787	17.67	52.60	7.314			
Cell 3	0.783	17.32	51.63	7.002			
Average	0.785	17.66	53.59	7.434			

Figure S5 (a) Cyclic voltammograms of aqueous 1 M Na₂S/1 M S/SiO₂ gel and the same liquid electrolyte without SiO₂, recorded between two Pt electrodes at a scan rate of 20 mV s⁻¹. (b) Variation of PCE as a function of exposure time to 1 sun (100 mW cm⁻²) for tandem cells with liquid and gel electrolytes.

Figure S6 IPCE*versus* wavelength curves for TiO_2/CdS (TC), $TiO_2/CdS/Au$ (TCA) and $TiO_2/CdS/Au/MoO_3$ (TCAM) photoanode-based cells each with three different counter electrodes: C-fabric (C), In_2S_3/C -fabric (IC), and $In_2S_3/NiO/C$ -fabric (INC) (polysulfide gel electrolyte, under 1 sunillumination, AM 1.5).