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Fluid Model
A fluctuating Navier-Stokes solver that is implemented in LAMMPS was used to model the fluid1.
LAMMPS is an open-source molecular dynamics progam that can simulate a collection of particles in a
solid, liquid or gaseous state2. It was designed to run calculations of the dynamics of a large ensemble
of particles efficiently in parallel processors. The fluctuating lattice Boltzmann and molecular dynamics
(LBMD) fluid model is a package implemented in LAMMPS.

The LBMD incorporates full hydrodynamics and uses a consistent coupling scheme in which the
particles in the fluid obey the macroscopically observed fluctuation-dissipation theorem without any
adjustable parameters1, 3–5. In general, the lattice Boltzmann method conserves angular momentum and
the added fluctuating stress is symmetric and momentum conserving. Hence, the LBMD also conserves
angular momentum. Fluid density is set to ρ = 9.98×102 kg m−3 and viscosity to η = 1 cP corresponding
to water. A periodic simulation domain is discretized using a lattice spacing of dx = 13.245 nm and MD
time step of dt = 29.1859 ps. The method allows simulations of not just spherical bodies or polymers but
also irregularly shaped bodies through a consistent fluid-particle coupling5. Another advantage of this
model is that the input parameters correspond to real units. The hydrodynamic drag coefficients from the
LB simulations are close to the theoretical drag coefficients of cylindrical particles.

Fluid-particle coupling
Extended bodies are represented by nodes that are uniformly distributed on their surface. To couple an
extended particle to the fluid, momentum and energy conserving local forces are introduced to both the
nodes and the fluid by assuming an elastic collision between them5. The fluid masses and momenta that
interact with the node are interpolated at the location of the node. A no-slip boundary condition is assumed
during the collision. The resulting final fluid u and node velocities v are given by

v = vi− (vi−ui)
2mu

mv +mu
; (1)

u = ui +(vi−ui)
2mv

mv +mu
, (2)

where the index i denotes the initial velocity, and mv and mu are the masses of the representative fluid and
node, respectively. The surface node density does not affect the results as long as the mass of the nodes
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and the mass of the representative area are consistent with the composite particles’ geometry (as shown in
Figs. S1c and S1d).

Helical parameters and drag measurements

(a) (b)

(c) (d)

Figure S1. (a) The cargo has the geometry of a prolate spheroid with semi-axes a = b = R and
c = 1.952R. (b) The cargo and the helical filament are connected by a segment of length R = 30 nm and
radius R/4 that is perpendicular to the easy axis of the helix. (c) Propulsion velocities of a helix without a
cargo with increasing number of nodes. Node spacing along the tangent helix is kept constant while the
node distribution along the plane of the normal and binormal vector of each segment increases. (d)
Rotational viscous drag coefficient of helices with varying number of nodes.

In this study, helices with and without attached cargo were simulated. In both cases, the helical filament
had a helical radius of R = 30 nm, and the optimized pitch length and helical radius ratio of 5.92, and
optimized number of turns of 1.25 were used6. The inner radius of the helical filament is 7.5 nm. The
attached cargo has the geometry of a prolate spheroid7 with aspect ratios that minimizes the drag8. The
helix without an attached cargo has 8377 nodes while the helix with an attached cargo has 1010 and 8702
nodes for the cargo and the helical filament, respectively. The results are independent of the number of
nodes as shown in Figs. S1c and S1d. The node masses are set such that the mass density of the helix is
equal to the mass density of the fluid environment. The measured translational diffusion coefficients are
given in Table S1. The rotational drag coefficients of the helices are provided in Table S2.

S2/S8



helix rotational drag coefficient (κ‖) [×10−25 N m s] minimum frequency [Hz] for PeT > 1
without cargo (13.38±0.26) 3095±60

with cargo (26.59±0.08) 1558±5

Table S1. Rotational drag coefficients of the helices. The minimum frequencies are the required
frequencies to overcome the interference of thermal fluctuation on the rotational motion of the helix.

helix translational diffusion coefficient DT [×10−4nm2/ns]
without cargo 10.34±1.37

with cargo 8.35±0.13

Table S2. Measured translational diffusion coefficients of the helices in simulations.
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Figure S2. (a) Applied external torque and viscous drag torque on a propelled helix that is initially at
rest. (b) Phase difference between the magnetic moment of a helix and the magnetic field for the step-out
frequency fSO = (149±3)×104 Hz.

The propulsion of helices is simulated by the interaction of a magnetic moment of the helix and an external
magnetic field. The magnetic moment M is fixed to be perpendicular to the long axis of the helical body.
An external torque on the helix is applied such that τ = M×B for B =−sin( f t)ŷ+ cos( f t)ẑ where f is
the field frequency. The magnetic field and the magnetic moment of the helix are initially aligned such that
when the magnetic field is rotated, the external torque increases from zero to κ‖ f where κ‖ is the rotational
drag coefficient (Fig. S2a). When the field frequency is less than the step-out frequency, the rotation of the
magnetic field and the helix are synchronized at steady state (Fig. S3a): the phase difference between the
magnetic field and magnetic moment is constant (Fig. S2b) and the external torque reaches a constant
value (Fig. S4). For field frequencies that are greater than the step-out frequencies (Figs. S3b and S3c),
the phase difference steps out of the π/2 phase difference and the external torque varies periodically with
time (Fig. S4).
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(a) 100×104 Hz

(b) 175×104 Hz

(c) 600×104 Hz

Figure S3. Components of the normalized alignment of the magnetic moment of the helix (blue) and
normalized magnetic field (orange) along the x-, y- and z-directions (first, second and third column
respectively) for various field frequencies. In these cases, the directions of the torque and the propulsion
are along x and the step-out frequency is fSO = 149×104 Hz.

(a) Helix without an attached cargo,
MB = 2.0×10−18 Nm.

(b) Helix with an attached cargo,
MB = 2.0×10−18 Nm.

Figure S4. External torque on the helices due the interaction between their magnetic moment and the
external magnetic field. Below the step-out frequency, the external torque reaches a constant value.
Beyond the step-out frequency, the external torque varies periodically between −MB and MB.
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Propulsion in the presence of thermal fluctuations

In the presence of thermal fluctuations, the propulsion velocities are measured by taking the ratio of
the displacement over a period of 14.6 µs for more than ten independent simulations. Figure S7 shows
the displacements of helices that are propelled at varying frequencies in a fluid with a temperature of
T = 300 K. The propulsion velocities with and without an attached cargo at 300 K (Figs. S5 and S6) have
propulsion velocities that are close to the propulsion velocities without thermal fluctuations (cf. Fig. 2 in
the main text).
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Figure S5. Propulsion velocities of a helix without an attached cargo at various driving frequencies in a
fluid with a temperature of T = 300 K. The orange line represents the propulsion velocities from
simulations without thermal fluctuations in Fig. 3.
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Figure S6. Propulsion velocities of a helix at various driving frequencies in a fluid with a temperature of
T = 300 K. The circles and triangles are driven at MB = 2.0×10−18 Nm and MB = 10.0×10−18,
respectively. The purple line is the extrapolated propulsion velocities as a function of the field frequencies
for high MB. The corresponding dotted dashed and dashed lines indicate the step-out frequency for
MB = 2.0×10−18 Nm and MB = 10.0×10−18, respectively.
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Figure S7. Displacements of the helix without an attached cargo for varying rotating field frequencies
for a step-out frequency of fSO = 149×104 Hz.

High MB steering

During propulsion, the rotational motion of these helices is stable and wobbling is minimal. At high MB
steering where the direction of the field is instantaneously changed, we observe that the helix aligns almost
instantaneously with the magnetic field (at t = 0.7×10−4 s and t = 1.4×10−4 s) as shown by the abrupt
changes in the alignment of the long axis in Fig. S8.

Figure S8. In the spherical coordinate system, θ gives the angle measured from the z-axis of the easy
axis of rotation of the helix and φ gives the angle measured in the xy-plane from the x-axis.

Low MB steering

In the main text, we have discussed the steering at high and low MB. Using the steering protocol at
high MB for low MB (10× 10−18 Nm), abrupt changes in the direction of the field causes the helix to
be momentarily out of sync with the magnetic field. At this stage, the helix precesses and rotates in the
direction opposite to the magnetic field until its rotational motion stabilizes and synchronizes with that of
the field as demonstrated in Fig. S9.
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Figure S9. Steering at low MB. Parametric trajectory for 90◦ turns driven with f = 1000 kHz and 
MB = 1.5 × 10−18 Nm. Large jumps in the displacement were not observed for steering at low MB but 
because the magnetic moment of the helix momentarily steps out of the π/2 phase difference, the helix 
rotates in the opposite direction until it its motion is synchronized with the field.

Magnetic Heating
Following reference 9 on the magnetic heating of nanoparticles, the calculated rise in temperature for 
nickel with the geometrical shape of the helix without an attached cargo is about 0.02 K per second 
using the material’s magnetic anisotropy constant of 5 × 103 J/m3 and magnetic susceptibility of 600, and 
relaxation parameter of 10−9 s.
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Figure S10. A cross section of the fluid velocity along the xy-plane (arrows). The colors of the arrows 
indicate the magnitude of the fluid velocity. The white helical spiral traces the path of the helix 
undergoing a circular turn corresponding to Fig. 5 in the main text.
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