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I. IMPLEMENTATION OF A15 AND σ LATTICE

The A15 lattice is a cubic lattice containing two types
of inequivalent lattice sites referred to as interstitial and
columnar, respectively, and a total of 8 sites per unit
cell. The 2 interstitial sites are located in the vertices
of the unit cell and in its center just like in the BCC
lattice, whereas the 6 columnar sites lie in pairs on the
bisectors of the faces of the unit cell oriented such that
these sites form sets of columns running along x, y, and z
axis (Fig. S1a). The interstitial sites are 12-coordinated

with a single nearest-neighbor distance equal to
√
5a/4,

where a is the lattice constant, its Wigner-Seitz cell be-
ing an irregular dodecahedron (Fig. S1b). The columnar
sites have 2 nearest neighbors at a distance of a/2 and

12 next-nearest neighbors at a distance of
√
5a/4), its

Wigner-Seitz cell being a decatetrahedron (Fig. S1b).

In our implementation, the deformation energy of the
A15 lattice is given by a 1:3 weighted average of the de-
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Figure S 1: A15 lattice: the ball-and-stick representation
where the interstitial and the columnar sites are represented
by black and white spheres, respectively (a), the dodecahedral
and the decatetrahedral Wigner-Seitz cells for the interstitial
and the columnar sites, respectively (b).

formation energies of the interstitial and the columnar
sites computed separately by confining the liquid drop in
a dodecahedral and a decatetrahedral cell, respectively.
This is numerically much more convenient than consid-
ering the whole unit cell with 8 drops at a time. In turn,
a separate analysis of the two inequivalent sites requires
some care because the true drop-drop contacts are me-
diated by confinement to the Wigner-Seitz cells, the cell
faces serving as an auxiliary device. In single-site lattices
such as the SC, FCC, BCC, and SH lattice, mechanical
balance of forces on a given contact zone is automatically
ensured by symmetry because each contact zone on the
reference drop pushes against an identical contact zone
on its neighbor. In the A15 lattice the same principle
ensures mechanical stability at the large hexagonal faces
as well as the pentagonal faces at the contact between
two neighboring columnar drops but not at the contacts
between the columnar and the interstitial drops.
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Figure S2: Relative difference of the contact-zone area of a
columnar drop that is in contact with an interstitial drop
and the contact-zone area of an interstitial drop that is in
contact with a columnar drop in the A15 lattice. In the
partial-faceting regime, we employ the regular Voronoi tes-
sellation and in the complete-faceting regime we employ the
adjusted Voronoi tessellation described below. Also indicated
are the complete-faceting, the partial-faceting, and the no-
contact regime.

In the partial-faceting regime, the areas of the contact
zones of columnar and interstitial drops with the faces
of the respective Wigner-Seitz cells are generally slightly
different, but as shown in Fig. S2 the relative area differ-
ence plotted is less than 0.33% except at a point where
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the two drops just touch each other; there it reaches
about 1.3%. The contribution of this small imbalance
of columnar-interstitial contact area to the overall nu-
merical accuracy of our results is marginal.
In the complete-faceting regime, any two neighboring

drops must have the same volume so as to ensure that the
pressures within the drops are the same. To ensure this,
the Voronoi tesselation is modified by displacing the faces
of the Wigner-Seitz cells that correspond to the contact
between the columnar and the interstitial cells towards
the interstitial cell (Fig. S3). Again the displacement
needed is small: The two volumes are identical if the
the distance between the center of mass of the columnar
Wigner-Seitz cell and the columnar-interstitial face is at
50.36% rather than at 50% of the distance betwen the
centers of the columnar and the interstitial cells.
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Figure S3: Schematic of the cross-section cutting across the
contact zone between 14-coordinated columnar site and 12-
coordinated interstitial site. Horizontal axis is the reduced
distance from the center of the columnar site expressed in
units of center-to-center distance of

√
5a/4. In a Voronoi

construction, the contact zone is halfway between the centers
(solid lines). To ensure mechanical balance in the complete-
faceting regime, the contact zone is slightly displaced towards
the center of the interstitial site (dashed lines), the relative
displacement amounting to 0.36% of the center-to-center dis-
tance.

In the σ lattice, we employ the same algorithm to en-
sure mechanical balance between drops in the 5 inequiv-
alent lattice sites, and the corrections needed are of the
same order of magnitude as in the A15 lattice.

II. PAIRWISE-ADDITIVE

SMALL-DEFORMATION REGIME

Numerical results

Figure 3a of the main text shows the deformation en-
ergy per neighbor for Ψ = 1 and ω = 1 and 1.1. Here we
further elaborate the pairwise-additive regime in the FCC
lattice whose low-density version is stable at densities
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Figure S4: FCC deformation energy per neighbor vs. inden-
tation at Ψ = 0.1, 1, and 10 (blue lines in panels a, b, and c,
respectively) for ω between 0.8 and 1.2. Red lines in panels
a, b, and c are fits based on Eqs. (S12), (S10), and (S13),
respectively; in Eq. (S10) we used R∗/R0 ≈ 0.755, which
corresponds to Ψ = 1. Fits are plotted using solid lines at in-
dentations where the deformation energy is pairwise additive.

where this regime is relevant. Figures S4a, b, and c show
the FCC deformation energy per neighbor for a broader
range of ω at Ψ = 0.1, 1, and 10, respectively, demon-
strating that the linear small-deformation regime is there
at all Ψ provided that ω & 1.1 or . 0.9. The figure also
shows that at ω = 1 the harmonic repulsion is present
at all Ψ . Finally, we scanned the small-deformation be-
havior for ω close to 1 with a step of 0.01 (not shown for
clarity) so as to locate the transition between the attrac-
tive and the repulsive regime, and we find that is exactly
at ω = 1 at all Ψ .

Figure S5 shows the exponent characterizing the small-
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Figure S5: Small-indentation exponent p vs. tension ratio ω
between 0.9 and 1.1 for Ψ = 0.1, 1, and 10. The Ψ = 1 data
are plotted using solid circles whereas the Ψ = 0.1 and 10
data are plotted using open circles not visible because the
three sets of points overlap.

deformation regime in the FCC lattice plotted against
tension ratio ω for Ψ = 0.1, 1, and 10. This diagram
shows that for ω . 0.9 the power is about 0.89, at ω = 1
it peaks at 2, and at ω & 1.1 it levels off at about 1.14.

Theory

The power-law small-deformation regimes can be un-
derstood based on geometric arguments, assuming that
the part of the drop undergoing indentation is a spheri-
cal cap and that the non-contact drop surface is spherical
(Fig. S6).
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Figure S6: Schematic of the spherical-cap model of inden-
tation of the liquid drop. The decrease of the solvent-drop
interfacial area ∆AF is colored blue whereas the increase of
the contact area ∆AC is hatched.

We first consider the change of surface energy associ-
ated with the formation of the contact zone. We dis-
regard any increase of drop radius upon indentation; as
shown below, a more detailed analysis shows that such
an increase leads to a h2 term in the deformation energy
whereas the leading order term is proportional to h. The
change of surface energy due to indentation at a single
contact zone is computed by assuming that the drop can
be approximated by a truncated sphere, and it depends

on the area of the cap before and after indentation. The
area of the spherical cap before it undergoes indentation
is

∆AF = 2πR∗h, (S1)

where h is indentation. Upon indentation, the cap is
flattened and its area reads

∆AC = π(2R∗ − h)h = 2πR∗h− πh2. (S2)

The total change of surface energy for a single contact
zone is ∆FA = γC∆AC/2− γF∆AF which is equal to

∆FA = 2π(ω − 1)γFR∗h− πωγFh
2. (S3)

For small indentations h/R∗ and provided that ω 6= 1,
this result is dominated by the linear term:

∆FA ≈ 2π(ω − 1)γFR∗h, (S4)

which explains the numerically obtained almost linear
pairwise-additive regime as well as the attractive and the
repulsive nature of this interaction at ω < 1 and ω > 1,
respectively.
Now we turn to terms proportional to h2; these do not

consist solely of the second term in Eq. (S3), which is
negative. Equation (S3) was derived by assuming that
the resting radius of the drop does not change, which
pertains to very compressible drops with Ψ ≫ 1. In this
case, the bulk energy increases upon indentation because
the volume of the drop is decreased by

−∆V = π

(

R∗ −
h

3

)

h2 ≈ πR∗h
2 (S5)

for small h/R∗. The corresponding increase of the bulk
energy is given by the work expended W = −p∆V where
p = 2γF /R∗ is the Laplace pressure in the resting drop.
Thus

∆Fbulk = 2πγFh
2. (S6)

This means that the total energy change for Ψ ≫ 1

∆F = ∆Fbulk +∆FA

= 2π(ω − 1)γFR∗h+ 2π
(

1− ω

2

)

γFh
2, (S7)

showing that for ω = 1, the deformation energy ∝ h2.
As ω departs from 1, the linear term is increasingly
more important at small indentations h → 0. However,
the crossover between this regime and that at somewhat
larger indentations where the second-order term is com-
parable to the linear term is evidently proportional to
|ω − 1| and thus small if ω is close to 1. Because of the
specific dependence of ∆F on ω, all of Eq. (S7) rather
than just its linear part should be regarded as the small-
deformation regime.
In the incompressible limit where Ψ ≪ 1, the volume

change on indentation is vanishingly small and the de-
crease of the drop volume in the cap is compensated by an
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Figure S7: Schematic illustrating the increase of resting radius
in incompressible drops.

increase of radius which then leads to an increased surface
energy (Fig. S7). To lowest order in h/R∗, the radius in-
crease ∆R∗ is determined by ∆V = πR∗h

2 = 4πR∗2∆R∗

so that

∆R∗ =
h2

4R∗

. (S8)

The non-contact area is thus increased by 8πR∗∆R∗ =
2πh2 and this gives rise to an additional surface term,
which needs to be added to Eq. (S3) and reads 2πγFh

2.
Since the bulk energy is constant, the total energy change
for Ψ ≪ 1 thus reads

∆F = 2π(ω − 1)γFR∗h+ 2π
(

1− ω

2

)

γFh
2. (S9)

This result is exactly the same as Eq. (S7), which is quite
remarkable because the two cases correspond to diamet-
rically opposite extremes, that is to arbitrarily compress-
ible drops with Ψ ≫ 1 and to incompressible drops with
Ψ ≪ 1.
Using Eq. (S7) or (S9) to interpret the numerically ob-

tained deformation free energy of drops in a given lattice
is easiest in lattices with a single type of sites with a single
type of neighbors such as the SC, DC, and FCC lattice.
In these lattices, the indentations at all drop-drop con-
tacts are identical and thus the total deformation energy
at a given density is a sum of z identical terms for each
site; here z is the coordination number.
To compare Eqs. (S7) and (S9) with Fig. 3a of the main

text and Fig. S4, note that in this paper the deformation
energy per contact is expressed in units of γFR

2
0 and

that the natural unit of h is R∗, the resting drop radius.
Thus we recast these equations, now interpreted as the
deformation energy per contact, as

∆F

zγFR2
0

= 2π

(

R∗

R0

)2
[

(ω − 1)
h

R∗

+
(

1− ω

2

)

(

h

R∗

)2
]

.

(S10)
The dimensionless prefactor (R∗/R0)

2 (referred to as λΨ

in Ref. [1]) depends on Ψ and is determined by the solu-
tion of

(

R∗

R0

)3

+ Ψ

(

R∗

R0

)2

− 1 = 0 (S11)

[Eq. (5) in Ref. [1]]. This equation can be solved analyti-
cally, but it is more illuminating to consider the limiting
cases Ψ ≪ 1 and Ψ ≫ 1 where R∗/R0 ≈ 1 − Ψ/3 and
R∗/R0 ≈ 1/Ψ1/2, respectively. Thus in reduced units,
Eq. (S10) reads

∆F

zγFR2
0

= 2π

(

1− 2Ψ

3

)

×
[

(ω − 1)
h

R∗

+
(

1− ω

2

)

(

h

R∗

)2
]

(S12)

for Ψ ≪ 1 and

∆F

zγFR2
0

=
2π

Ψ

[

(ω − 1)
h

R∗

+
(

1− ω

2

)

(

h

R∗

)2
]

. (S13)

for Ψ ≫ 1. The fits of the small-deformation pairwise-
additive deformation free energy based on Eq. (S10) in-
cluded in Fig. S4, showing rather good agreement—and
suggesting that the numerically found power-law expo-
nents of ≈ 1.14 and 0.89 at ω & 1.1 and ω . 0.9, re-
spectively (Fig. S5), which characterize the drop-drop
interaction at small indentations, should be regarded as
effective exponents arising from a combination of terms
proportional to h and h2. The data in Fig. S4a and c
are fitted using Eq. (S12) and Eq. (S13), respectively,
whereas the data in Fig. S4b are fitted using Eq. (S10)
with R∗/R0 ≈ 0.755, which corresponds to Ψ = 1.
In Fig. S4, we plot the fits using solid lines at indenta-

tions where the deformation energy is pairwise-additive;
the dashed segments extend beyond this regime. This
demonstrates that Eqs. (S7) and (S9) and the theory be-
hind them capture the main effects involved although
there exists a small systematic residual discrepancy be-
tween the slopes at small indentations, especially visible
at large Ψ and ω > 1 (such as Ψ = 10 and ω = 1.2 in
Fig. S4c) where these formulas overestimate the repulsive
energy. This discrepancy is not surprising as in our the-
ory the area of the contact zone is calculated by approxi-
mating the drop by a truncated sphere whereas in reality
this area is determined by the minimum of the total free
energy at given indentation. At ω > 1 this minimization
leads to a smaller contact zone (and thus a smaller re-
pulsive contact energy) than the geometrical arguments
alone, but this is evidently a second-order effect. At the
same time, we can think of other refinements of Eqs. (S7)
and (S9) to include, e.g., the increase of the contact-zone
diameter in drops with Ψ ≪ 1 due to the increase of
the drop radius upon indentation, which is indicated in
Fig. 7, or the increase of pressure upon indentation in
drops with Ψ ≫ 1. It is possible that these refinements
would further improve the already good agreement.
More importantly, Fig. S4 also shows that Eqs. (S7)

and (S9) are valid not only at Ψ ≫ 1 and Ψ ≪ 1 where
we derived them but also at other values of Ψ as demon-
strated by panel b. We are led to conclude that our
analytical results for the drop-drop interaction are to a
very good approximation universal.
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III. NON-CONVEX AND NON-MONOTONIC

DEFORMATION ENERGY

The ω-dependent non-convex and non-monotonic de-
formation energy profiles are not specific to the FCC lat-
tice (Fig. 3b of the main text) but are generally found
in all lattices. Figure S8 shows the deformation energies
of the FCC, SC, BCC, A15, and σ lattice for the values
of Ψ and ω covered in Fig. 3b of the main text; panel
a representing the FCC lattice is replotted from Fig. 3b
of the main text for convenience. Qualitatively, the de-
formation energies of these three lattices are the same
as in the FCC lattice in that they too are characterized
by i) a hump at a large enough tension ratio ω and a
small enough Ψ and ii) an attraction on contact and a
minimum at small enough ω.

The main quantitative differences between the lattices
are i) the specific volume where the drops are in contact,
which is smallest in the FCC lattice, and ii) the discon-
tinuities of the slope of the deformation energy seen in
lattices with more than a single type of neighbors. In
the BCC lattice, the second-nearest neighbors touch at
v/σ3

∗
≈ 0.49, which is indicated by an arrow. Also visible

are the two slope discontinuities in the A15 lattice (also
indicated by arrows) whereas in the σ lattice there are 6
of them, and they are less prominent.

In Fig. S8 as well as in Fig. 3b of the main text, we
choose to plot the deformation free energy ∆F at dif-
ferent reduced Egelstaff-Widom lengths Ψ on the same
scale so as to show how a variation of Ψ affects the over-
all magnitude of ∆F , and the range used is adjusted to
the Ψ = 1 sets of curves. In turn, the fine details of some
of the Ψ = 10 and Ψ = 0.1 curves are not easily visible:
For example, the non-convexity of ∆F at Ψ = 10 and
ω = 1.3 is obvious in all lattices but that at Ψ = 10 and
ω = 1.1 is not although it is there. To show the presence
of the distinct features of ∆F that qualitatively affect
the phase diagram, we divide the (ω, Ψ) parameter space
into three regions (Fig. S9). The first one corresponds to
drops that are characterized by an attractive interaction
at small indentations, which leads to aggregation upon
contact; this regime is referred to as non-monotonic. The
second regime referred to as non-convex corresponds to
drops with a hump-like deformation free energy where
∆F is convex at small and large indentations but not at
intermediate indentations. The third regime referred to
as regular covers cases where the deformation energy is
both monotonic and convex.

The thus defined non-monotonic and the non-convex
are not mutually exclusive as illustrated by Fig. S10
which shows ∆F in the BCC lattice at Ψ = 10 and
ω = 0.9, which is attractive at small indentations (that is
at large specific volumes a little smaller than that where
the neighboring drops just touch) and non-convex at in-
termediate indentations (that is at intermediate specific
volumes). Here the non-convexity is due to the attrac-
tive interaction between the drop and the next-nearest
neighbors. This behavior is generally seen at ω < 1 in all
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Figure S8: Deformation energy vs. specific volume for FCC,
SC, BCC, A15, and σ lattice (a, b, c, d, and e, respectively) for
Ψ = 0.1, 1, and 10 and ω = 0.7, 0.9, 1.1, and 1.3. Locations of
slope discontinuities in the BCC and A15 lattice are indicated
by arrows. In the Ψ = 0.1 and the Ψ = 10 sets of curves, labels
indicating the value of ω are omitted for clarity; the values
and their order is the same as in the Ψ = 1 sets.
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convex (red) function of specific volume; at small Ψ and ω > 1,
the free energy is a monotonic and strictly convex function,
and this behavior is referred to as regular (green). In the
BCC, A15, and σ lattice, the non-monotonic and the non-
convex regimes overlap at tension ratios ω somewhat smaller
than 1 (magenta). Solid lines are guides to the eye except
the vertical boundary of the non-monotonic regime at ω = 1,
which is exact.
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Figure S10: Deformation energy of the BCC lattice at Ψ = 10
and ω = 0.9, which is both non-monotonic and non-convex.
The vertical arrow indicates the specific volume where the
next-nearest neighbors just touch.

lattices where both nearest and next-nearest neighbors
are in contact.
In Fig. S9, we show the three regimes for the FCC,

SC, BCC, A15, and σ lattice. In all lattices, the ω < 1
domain belongs to the non-monotonic regime. The non-
convex regime is located in the ω > part of the diagram at
moderate and large Ψ . In addition, in the BCC, A15, and
σ lattice it also occupies a small portion of the ω < 1 part
of the diagram where it overlaps with the non-monotonic
regime. The ω > 1, small-Ψ part of the diagram be-
longs to the regular regime. The boundary between the
non-convex and the regular regime decreases with ω but
saturates at ω & 1.1. The precise location of this bound-
ary varies from lattice to lattice.

IV. WET FOAM ANALOGY

A dense suspension of our liquid drops with a pack-
ing fraction η smaller than 1 is similar to the wet foam
in that a large but not all of the volume is filled by the
drops; the voids at the edges and the vertices of the par-
tially faceted drops correspond to the Plateau borders
and their junctions (Fig. S11). This analogy is illustra-
tive but incomplete. Firstly, bubbles in foams are usually
assumed incompressible so as to reflect the fact that the
surface energy of the foam is much smaller than its bulk
energy whereas our drops are compressible; in this re-
spect, a wet foam may be regarded as the Ψ = 0 limit
of the liquid-drop suspension. Secondly, the wet foam is
characterized by a single surface tension associated with
the gas-liquid interface, which pertains to films that sep-
arate neighboring bubbles as well as to Plateau borders
and junctions. On the other hand, the description of the
liquid-drop suspension requires two surface tensions, one
for the drop-drop contact which represents two nanocol-
loids pushing against each other and one for the solvent-
drop contact mimicking the free surface of the colloids.
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Figure S11: Schematic of closely packed spherical polymer
brushes illustrating the difference between the interfacial ten-
sion of the drop-drop contact zones and the solvent-drop in-
terfacial tension as two key parameters of the liquid-drop
model (a). Panel b shows a cross-section of the wet foam,
which is characterized by a single surface tension.

In view of the constant-volume constraint employed
in studies of wet foams, it is plausible that the exponent
characterizing the small-deformation regime is somewhat
larger than our ω = 1 exponent of p ≈ 2.0 and that it
increases with the coordination number z. The values
reported in Ref. [2] range between 2.1 (z = 2) and 2.6
(z = 20). Another consequence of the constraint is a
smaller range where the deformation energy is indepen-
dent of z and is thus pairwise-additive for practical pur-
poses. As seen in Fig. 8 in Ref. [2], this range extends to
reduced indentations of h/R∗ ≈ 0.01 rather than about
0.05 like in our model (Fig. 3a of the main text).

V. STRUCTURE OF AGGREGATES AT ω < 1

At ω < 1, the deformation energy of the liquid drop in
a lattice is characterized by a minimum because the ten-
sion of the contact zones is smaller than the solvent-drop
interfacial tension. The depth of the minimum depends
on the lattice as well as on Ψ and ω. Apart from the
kinetic arguments which go beyond the scope of this pa-
per, the stable aggregate structure corresponds to the
lattice with the deepest minimum at given Ψ and ω. Fig-
ure S12 shows that at Ψ = 1, the drops form an FCC
aggregate at ω & 0.65 whereas at ω . 0.65 they form
a BCC aggregate; for clarity, we do not plot the other
lattices considered but only FCC, BCC, SC, A15, and σ
lattice. (These pieces of information are also included in
the phase diagram in Fig. S13 where we divide the small-
density domain at ω < 1 which belongs to aggregates into
regions where the aggregates form an FCC and a BCC
lattice.)
Figure S12 also shows that the specific volume of the

stable aggregate increases with ω and that the aggre-
gates are more strongly bound at small ω as expected.
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bottom). For ω . 0.65, the minimum corresponds to the
BCC lattice whereas for ω between 0.65 and 1 it corresponds
to the FCC lattice. The dashed line shows the binding energy.

The dependence of the binding energy on the reduced
Egelstaff-Widom length Ψ and on the tension ratio ω
will be studied in detail in a forthcoming publication.
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VI. PHASE DIAGRAM

Figure S13 shows the phase diagram at tension ratio ω between 0.6 and 1.3, complementing Fig. 5 of the main text
with a finer level of detail. At ω > 1.3, the phase diagram does not change very much qualitatively, the only new
phase being the oblate simple hexagonal (SH) lattice at ω & 1.5 as discussed below.
The ω = 1 results may be compared to the T = 0 phase diagram of particles interacting with a harmonic pair

repulsion [3]. In the range of reduced densities up to ρσ3
∗
= 4 covered in Fig. 5 of the main text, the phase sequence of

these particles is fluid-FCC-BCC-base-centered orthorhombic (baco)-SH [3] where the ratios of lattice parameters in
the baco lattice are b/a = 1 and c/a = 0.73 whereas in the SH lattice it is c/a = 0.61. This sequence is quite distinct
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from our phase diagram at any Ψ , one of the main dif-
ferences being the absence of the A15 crystal in Ref. [3]:
This phase was considered as a trial lattice but found not
to be stable. In addition, the coexistence regions of the
harmonic pair repulsion model are rather narrow whereas
they are broad in the liquid-drop model (Fig. S13). This
comparison shows that the many-body effects at work in
the liquid-drop model are very prominent if not essential.
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Figure S14: Phase diagram at ω = 2 featuring the oblate and
the prolate SH lattice. Labels in the SH regions indicate the
ratio of lattice parameters c/a in a specific part of the region;
naturally, c/a varies in a continuously across the regions. Also
shown are two representative snapshots of the drop from the
oblate and the prolate domain, the former at Ψ = 0.5, ρσ3

∗
=

2.5, and c/a = 0.5 and the latter at Ψ = 0.5, ρσ3

∗
= 3.3, and

c/a = 1.5.

At tension ratio ω & 1.3, the SH lattice is rather promi-
nent. The prolate branch with c/a > 1 appears in the
phase diagram at ω ≈ 1.2 and as ω is increased, it oc-
cupies an increasingly larger region centered roughly at
ρσ3

∗
≈ 3. The ratio of lattice parameters in the prolate

region ranges from about 1.4 to about 2.0, the bounds
depending on ω. Beyond ω ≈ 1.5, the oblate SH branch
with c/a < 1 is also present at somewhat smaller den-
sities, and the domain of stability of the oblate region
increases with ω. Figure S14 shows the phase diagram at
ω = 2 where both branches of the SH phase are rather
large and located at Ψ < 1.

The stability of the SH lattice at intermediate densities
can be understood by examining its deformation energy.
Figure S15 shows the deformation energy as a function
of specific volume, and we see that the energies of both
oblate and prolate branch are marked by a knee associ-
ated with a change of coordination number. For clarity,
we plot the deformation energy of two representative SH
lattices with c/a = 0.5 and 1.5. In the former, the co-
ordination number increases from 2 to 8 at v/σ3

∗
≈ 0.43,

which leads to a dramatic change of slope. In the pro-
late branch, this effect is less prominent but it still gives
rise to a knee-like profile of the deformation energy. As
the knees of both curves are located in the middle of the
non-convex sections of the deformation energies of the

10.80.60.40.20

15

10

5

0

20

d
ef

o
rm

at
io

n
 e

n
er

gy
 Δ
F/
γ F

 R
02
 

specific volume v/σ
*

3

FCC

BCC

A15

SH

c/a = 0.5

c/a = 1.5

Figure S15: Deformation energy vs. specific volume for drops
with ω = 2 in FCC, BCC, and A15 as well as SH lattice with
c/a = 0.5 and 1.5. The knees in the SH curves at v/σ3

∗
= 0.43

and 0.38, respectively, are marked with open circles. Insets
show the shape of the liquid drop in the oblate and the prolate
SH branch at large specific volumes where the drops are in
contact with 2 and 6 neighbors, respectively, and at small
specific volumes where they push on all 8 neighbors.

other trial lattices (in Fig. S15 we only show the energies
of FCC, BCC, and A15 lattice for clarity) the SH lattice
with a suitable ratio of lattice parameters c/a is stable.
It is not too difficult to imagine that if the ratio c/a

is varied, the knees in the deformation energies in both
variants of the SH lattice are shifted, and thus the phase
diagram includes an oblate and a prolate SH region with
c/a continuously varying from point to point.
The (ρσ3

∗
, Ψ) representation of the phase diagram is

convenient for comparison with experiments where the
only quantity varied is density. This is not always
the case; often temperature is varied instead. Among
the three material parameters needed to describe drops
in contact—the solvent-drop interfacial tension γF , the
drop-drop contact tension γC , and the drop compress-
ibility χT—, γC and χT can used to independently con-
trol the tension ratio ω and the reduced Egelstaff-Widom
length Ψ . On the other hand, the solvent-drop interfacial
tension γF (which depends on solvent quality) appears in
both ω and Ψ . An decrease of γF at fixed γC and χT thus
leads to an increase of ω and a simultaneous decrease of
Ψ . In this case, neither the (ρσ3

∗
, Ψ) nor the (ρσ3

∗
, ω)

representation of the phase diagram are the most telling
ones.

VII. DROP VOLUME VS. SPECIFIC VOLUME

The secondary horizontal axis in Fig. 6 of the main text
is linear in the complete-faceting regime and increasingly
more non-linear in the partial-faceting regime as drop
volume approaches the resting volume where the drops
just touch. This relationship is more clearly represented
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packing fraction. The drops are in contact at specific volumes
smaller than ≈ 0.707.

in Fig. S16 where we plot the volume of drops in FCC
lattice together with the packing fraction as a function
of the specific volume for Ψ = 1 and ω = 1. The drops
are in contact at specific volumes v < 0.707 and Fig. S16
shows that down to v ≈ 0.6 the drop volume hardly de-
creases. On the other hand, from v ≈ 0.4 down to 0
where the packing fraction is almost 1, the drop volume
is essentially the same as the specific volume.
The dependence of drop volume on the specific volume

at Ψ = 1 and ω = 1 shown in Fig. S16 is representative of
all values of the reduced Egelstaff-Widom length Ψ and
tension ratio ω, the variation of V (v) with Ψ and ω being
as limited as the variation of packing fraction η shown in
Fig. 2c of the main text.

VIII. ON PHYSICAL MEANING OF REDUCED

EGELSTAFF-WIDOM LENGTH Ψ

Here we resort to statistical mechanics of polymers to
estimate the physically relevant ranges of the reduced
Egelstaff-Widom length Ψ by relating it to the osmotic
equation of state for macromolecules. As a preliminary
note, we emphasize that the surface tension of the liquid-
drop model γF is an effective parameter describing the
nanocolloidal particle as a whole and it should not be
confused with the polymer-solvent surface tension. In-
deed, as demonstrated by explicit calculations [4], the
real surface tension between a (grafted) polymer and a
good solvent is negative because a good solvent does enter
into the brush. Instead, our positive γF is representative
of the forces within a polymer brush which hold the brush
together, due to the connectivity of the monomers and
the grafting of the chains onto the central colloidal core:
Without it, the individual monomers would disperse. In
the liquid-drop model the monomers are indeed viewed
as disconnected albeit held together by the van der Waals
attractive forces included in the Murnaghan equation of

state [which corresponds to the first term in Eq. (1) of
the main text], and a positive surface tension γF repre-
sents the effect of chain connectivity as the main cohesive
force in the brush.
We now relate the effective surface tension γF and χT

as the material model parameters to the osmotic equation
of state, seeking scaling-theory arguments for the depen-
dence of Ψ on the monomer density within the nanocol-
loid. The surface tension is related to the osmotic pres-
sure Π via the Laplace law

2γF
R∗

= Π, (S14)

where R∗ is the resting radius of the drop. Let us now
consider a soft polymeric nanocolloid such as a brush,
a cross-linked microgel, a dendritic brush, or a ran-
domly branched polymer. We assume that there are N
monomers within the colloid so that the monomer density
reads

φ =
N

V∗

, (S15)

where V∗ = 4πR3
∗
/3 is the resting volume of the colloid.

The reduced Egelstaff-Widom length [Eq. (2) of the main
text] can be cast as

Ψ = λΨ
2γF
R∗

χT , (S16)

where λΨ = R∗/R0 is the ratio of the resting and the ref-
erence radii of the drop [1] representing the shrinkage of
the drop due to surface tension. Together with Eq. (S14),
Eq. (S16) states that Ψ scales as

Ψ ∼= ΠχT . (S17)

The value of the isothermal compressibility χT pertains
to the reference state of the model where the surface ten-
sion vanishes, whereas the physically relevant value in the
resting state at a finite tension [and thus a finite osmotic
pressure; see Eq. (S14)] differs from it by a numerical
factor of V∗/V0 = λ3

Ψ . Within the scope of the scaling
theory, we can thus estimate χT by

− 1

V∗

(

∂V∗

∂Π

)

T

(S18)

and since ∂/∂V∗ = −(N/V 2
∗
)∂/∂φ, we find that

χT
∼= 1

φΠ ′(φ)
. (S19)

From Eqs. (S17) and (S19) we finally obtain

Ψ ∼= Π(φ)

φΠ ′(φ)
(S20)

Equation (S20) relates the monomer density φ within
the nanocolloidal particle with the value of Ψ via the
osmotic equation of state Π(φ) of the polymer that con-
stitutes the particle. Here we assume that the polymer
within the particle can be treated as bulk material and
view it as a polymer solution.
Let us now examine a few special cases.
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A. Dilute polymer brushes

In the dilute limit, that is for φ smaller than the overlap
density φ∗, the osmotic pressure is given by the van’t Hoff
law [5] and proportional to the monomer density

Π ∝ φ (S21)

so that

Ψ ∼ 1 (S22)

independent of monomer density φ.

B. Semidilute polymer brushes

Semidilute polymer brushes are self-similar. As a con-
sequence, their equations of state are power-law functions
of φ [5], namely

Π(φ) = Cφµ. (S23)

Here C is a constant of the form kBTℓ
3(µ−1), ℓ being

some length scale which could involve, e.g., the excluded
volume v0 or the three-body term w for the Θ solutions as
well as the bond size b. The precise value of ℓ is however
irrelevant because from Eqs. (S20) and (S23) we obtain

Ψ ∼ 1

µ
, (S24)

again independent of monomer density φ. For good
solvents, results from Ref. [1] fully confirm the valid-
ity of Eq. (S24): In this reference Ψ was found to be
≈ 0.6 independent of the functionality f and the num-
ber of monomers N ; i.e., independent of φ. Specifically,
Π(φ) ∼ φ3 in Θ solvents whereas Π(φ) ∼ φ9/4 in good
solvents [5]. Since µΘ > µgood solvent, we can expect that
ΨΘ < Ψgood solvent based on Eq. (S24).
On going from the dilute to the semidilute regime, the

reduced Egelstaff-Widom length Ψ should thus decrease
from a value or order 1 to a smaller value, which is larger
in good solvents than in poor solvents (Fig. S17). In star
polymers and in spherical polymer brushes, the simplest
way of changing φ is by changing the functionality and
the grafting density, respectively. Quite generally, we
conclude that in the dilute and in the semidilute regime
Ψ decreases with chain number and increases as solvent
quality is improved.

C. Crowding-dominated regime

Figure S17 also covers the behavior of Ψ in the
crowding-dominated regime at large φ. Here the osmotic
pressure Π(φ) increases more steeply with φ than in the
semidilute regime. Indeed, as the density of the poly-
mer solution crosses over from the semidilute regime to
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Figure S17: Dependence of Ψ on monomer density within
the nanocolloidal particle with the solvent-controlled plateau
in brushes in the semidilute regime, the generally decreasing
trend characteristic of branched and cross-linked polymers,
and anomalous increase in rigid polymers at high densities.

the melt, details of the monomer-monomer interactions
start playing a role, leading to non-universal equations of
state and to a steep increase of the pressure, which reflect
the increasingly relevant crowding of individual, repulsive
monomers. Accordingly, the equation of state attains a
generic form similar to the one sketched in Fig. S18 (see,
e.g., Fig. 1 in Ref. [6]).

crowding-
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regime

semidilute

regime

solvent quality

ln
 Π μ

1

ln 

Figure S18: Schematic log-log plot of the osmotic pressure in
a flexible-chain polymer brush in the dilute, semidilute, and
crowding-dominated regime.

In the crowding-dominated regime, the reduced
Egelstaff-Widom length depends on φ. This is easily seen
by rewriting Eq. (S20) as

Ψ ∼
[

d lnΠ(φ)

d lnφ

]

−1

. (S25)

The log-log plot of Π(φ) in Fig. S18 readily shows that
at any density φ in the crowding-dominated regime the
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derivative d lnΠ(φ)/d lnφ is larger than in the semidilute
regime and thus Ψ in the crowding-dominated regime is
smaller than the semidilute-regime value of 1/µ. This
argument explains the decrease of Ψ at high densities
shown in Fig. S17.

An explicit illustration of this behavior may start from
a model equation of state of type Π(φ) ∝ (φ0 − φ)−m

where m > 0 and φ < φ0. This model describes a di-
verging pressure as the ”jamming limit” φ → φ−

0 is ap-
proached, which qualitatively agrees with Fig. S18. This
immediately gives

Ψ ∝ φ0 − φ

mφ
(S26)

which goes to 0 as φ → φ0. We conclude that the re-
duced Egelstaff-Widom length Ψ further decreases in the
crowding-dominated regime, and this should allow one to
experimentally explore the most interesting part of the
phase diagram in Fig. 5 of the main text and Fig. S13,
which is at small Ψ .

D. Branched and cross-linked polymers

These ideas can be transplanted to branched and cross-
linked polymers. For example, Fig. 10 in Ref. [7] shows
that dendrimers are characterized by an equation of state
that qualitatively looks like that in Fig. S18. Based on
this finding, we can expect that in dendrimers and other
regularly or randomly branched polymers too Ψ should
decrease with φ, except that in these systems the decrease
should be gradual rather than step-like as they are not
self-similar. In these systems, we can effectively crowd
the brush with monomers at will by changing dendritic
generation and/or branching number [8].

E. Rigid-chain brushes

In semiflexible and rigid chains, the osmotic pressure is
characterized by a cusp at intermediate monomer densi-
ties as seen in Fig. 10 in Ref. [9] (schematically shown
in Fig. S19). This feature is associated with a (par-
tial) nematic orientational order of the chains induced
by compression. Beyond the cusp, the osmotic pressure
increases with φ more slowly than below the cusp, al-
though at higher densities still its slope again becomes
larger. As a result Ψ should here increase with φ be-
yond the cusp, and then it should decrease again at high
enough φ as shown with the dashed line in Fig. S17. This
non-monotonic behavior of the reduced Egelstaff-Widom
length Ψ is more challenging from the experimental per-
spective but nonetheless possible, say in polyelectrolyte
or DNA chains.
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solvent quality

ln
 Π μ

1

ln 

Figure S19: Schematic log-log plot of the osmotic pressure
in a rigid-chain polymer brush in the dilute, semidilute, and
crowding-dominated regime.

F. Scanning phase diagram

In conclusion, these arguments suggest that the theo-
retical phase diagram of the liquid-drop model can be ex-
perimentally explored by changing solvent quality, brush
functionality, chain branching or cross-linking, and chain
rigidity. This is schematically summarized in Fig. S20
where we redraw the ω = 1.1 phase diagram [Fig. 5c of
the main text and Fig. S13f] with overlaid trajectories
corresponding to spherical linear-chain brushes in good
and poor solvents and at small and large functionalities.
These trajectories represent a cut across the phase dia-
gram obtained, e.g., upon compression or expansion. In
turn, solvent quality can be controlled by changing tem-
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Figure S 20: Phase diagram of the liquid-drop model in
the (ρσ3

∗
, Ψ) at ω = 1.1 with schematically indicated se-

quences that should be experimentally achievable with spher-
ical linear-chain brushes upon increasing density in good and
Θ-solvents and at small and large functionalities. Also in-
cluded is a schematic trajectory expected upon heating or
cooling at fixed density of the spherical-polymer-brush parti-
cles for the normal case, in which the solvent quality improves
with temperature.
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perature or pH, and these two parameters indeed appear
to be the simplest quantities to vary so as to change Ψ
in a given sample.
In case the phase diagram were scanned by changing

temperature rather than density, one should expect to
observe a phase sequence corresponding to a diagonal
rather than a horizontal trajectory across Fig. S20 be-
cause an increase of temperature will, for the vast ma-
jority of solvents and polymers, i) improve solvent qual-
ity, which will in turn ii) increase the diameter of, e.g.,
a star-polymer nanocolloidal particle [10] and hence the
reduced density. A schematic cut across the phase dia-
gram expected in a heating/cooling run is also shown in
Fig. S20.

IX. ON PHYSICAL MEANING OF TENSION

RATIO ω

To determine the realistic range of the ratio of effective
interfacial tension of the contact zones and (twice) the

effective tension of the solvent-drop interface

ω =
γC
2γF

, (S27)

we employ scaling and other theoretical arguments. As
per the tension of the solvent-drop interface γF , in Ref. [1]
it was shown that it scales as

γF = kBT
f3/2

R2
∗

, (S28)

where f is the functionality of the spherical polymer
brush or star polymer. The interfacial tension of the
contact zones γC which measures the free energy per unit
area when two brushes come in contact can be estimated
by resorting to the interaction potential [11] between two
star polymers, which is repulsive and reads

u(r) =
5

18
kBTf

3/2























− ln

(

r

2R∗

)

+
1

1 +
√
f/2

, r ≤ 2R∗

1

1 +
√
f/2

2R∗

r
exp

(

−
√
f

2

r − 2R∗

2R∗

)

, r > 2R∗

. (S29)

We consider two such stars when they first come in con-
tact as their center-to-center distance is decreased from
a large value. If we model them as spheres of radius R∗,
they touch at r = 2R∗ (Fig. S21).

R
*

R
b

Figure S 21: Two star polymers in contact, showing the
Daoud-Cotton blobs along some of the arms.

According to Eq. (S29), the free energy penalty for
touching is

u(r = 2R∗) =
5

18

kBTf
3/2

1 +
√
f/2

=
5

9
kBT

√

f, (S30)

the last result applying to the limit of large f . The radius
of the outermost Daoud-Cotton blob Rb (see Ref. [11]
and Fig. S21) is estimated by realizing that the surface
of the star polymer consists of f discs of radius Rb. Thus
fR2

b = R2
∗
and

Rb =
R∗√
f
. (S31)

Since the surface area of the contact of two stars when
they just touch is of the order of R2

b , we obtain from
Eqs. (S30) and (S31)

γC ∼ u(r = 2R∗)

R2
b

∼ kBT
√
f

(Rb/
√
f)2

= kBT
f3/2

R2
∗

. (S32)

There is a remarkable coincidence between Eqs. (S28)
and (S32): Both γF and γC scale the same way with all
three relevant parameters, kBT, f, and R∗. Although the
scaling ∼ kBT/R

2
∗
is expected on dimensional grounds,
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the common f3/2 term is nontrivial, having its physical
origin in the number of blobs in the brush. Thus we
conclude that the tension ratio ω is generally of order 1:

ω ∼ 1. (S33)

This is an important result because it implies that by
varying the parameters that affect the precise value of
the two tensions, we can make ω either smaller or larger
than unity and thus explore both the ω < 1 regime char-
acterized by attractive drops and aggregation at small
densities as well as the ω > 1 regime characterized by re-
pulsive drops and a stable fluid phase at small densities
(Fig. S13).
Experimental results are consistent with ω > 1 sim-

ply because in homopolymer-based star polymers and
in spherical polymer brushes, aggregation has not been

observed. On the other hand, spontaneous aggregation
behavior seen in numerous studies of end-functionalized
star polymers and brushes (see, e.g., Refs. [12–14]) can
also be viewed as a manifestation of ω < 1 in these cases.
Indeed, it is plausible that modification or functional-
ization of endgroups will affect γC but not γF ; the latter
scales as ∼ ΠR∗ and is determined by the behavior of the
bulk of star polymers whereas the former can be either
increased (by big endgroups, charge, etc.) or decreased
(by attractive or zwitterionic endgroups).

In conclusion, we showed that for polymer brushes in
good solvents the tension ratio ω & 1 but can be either
increased or decreased by a suitable choice of endgroups.
In turn, this implies that for different nanocolloids the
value of ω is less universal than is the reduced Egelstaff-
Widom length Ψ .
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