Tuning the emission of a water-soluble 3-hydroxyflavone derivative by host-guest complexation

Supporting Information

Dahua Li, Yuzhi Xing, Lan Ding, Chengfeng Wu, Guangliang Hou and Bo Song*
College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China Email: songbo@suda.edu.cn

Figure S1 (a) 1H NMR spectrum of 3HF-EO in CDCl$_3$ and (b) Q-TOF MS of 3HF-EO in methanol.

Figure S2 The PL spectra of 3HF-EO in the presence of 1, 5 and 8 equivalents of (a) α-CD, (b) β-CD or (c) γ-CD in water.

Figure S3 (a) The NMR titration of 3HF-EO upon addition of β-CD. The total concentration of 3HF-EO and β-CD were kept constant, and the molar ratio of 3HF-EO was varied. (b) The aromatic region of (a). The chemical shifts of proton H-e on 3HF-EO were applied to draw the Job’s Plot. R is the molar ratio of 3HF-EO in 3HF-EO and β-CD. $\Delta\delta = \delta$(3HF-EO/β-CD) - δ(3HF-EO).
Figure S4 (a) The NMR titration of 3HF-EO upon addition of γ-CD. The total concentration of 3HF-EO and γ-CD were kept constant, and the molar ratio of 3HF-EO was varied. (b) The aromatic region of (a). The chemical shifts of proton H-e on 3HF-EO were applied to draw the Job’s Plot. R is the molar ratio of 3HF-EO in 3HF-EO and γ-CD. $\Delta \delta = \delta (3HF-EO/\gamma-CD) - \delta (3HF-EO)$.