Supporting Information for: Lining, Thinning and Thickening of Sheared Colloids in a Two-dimensional Taylor-Couette Geometry

Antonio Ortiz-Ambriz1, Sascha Gerloff2, Sabine H. L. Klapp2, Jordi Ortín1,3, and Pietro Tierno1,3,4*

1Departament de Física de la Matèria Condensada, Universitat de Barcelona, Barcelona, Spain
2Institut für Theoretische Physik, Technische Universität Berlin, Berlin, Germany
3Universitat de Barcelona Institute of Complex Systems (UBICS), Universitat de Barcelona, Barcelona, Spain and
4Institut de Nanociència i Nanotecnologia, Universitat de Barcelona, Barcelona, Spain

(Dated: March 2, 2018)

SUPPORTING VIDEOS

The following five videoclips support Figs. 1, 2 and 4.

• VideoS1(.WMV) This videoclip illustrates the dynamics of a colloidal cluster subjected to a clockwise rotating magnetic field with amplitude $B_0 = 1.5$ mT and frequency $\Omega = 125.7$ rad s$^{-1}$. The outer colloidal layer is rotated by the AOD in counterclockwise direction at an angular velocity of $\omega_1 = -0.6$ rad s$^{-1}$. The video corresponds to the situation (b) in Fig.2 of the article.

• VideoS2(.WMV) This video shows a colloidal cluster where the inner magnetic trimer is subjected to a counter-clockwise rotating field with amplitude $B_0 = 0.65$ mT and frequency $\Omega = 125.7$ rad s$^{-1}$, while the outer particles are not rotated ($\omega_4 = 0$ rad s$^{-1}$). The video corresponds to the Fig.1 of the article.

• VideoS3(.WMV) This video shows a colloidal cluster where both the inner trimer ($B_0 = 1.25$ mT, $\Omega = 125.7$ rad s$^{-1}$) and the outer layer ($\omega_4 = 0.4$ rad s$^{-1}$) are rotated in clockwise direction. The video corresponds to Fig.1 of the article.

• VideoS4(.WMV) This video shows a colloidal cluster where the outer particles are not rotated ($\omega_4 = 0$ rad s$^{-1}$), while the inner trimer is subjected to a counter-clockwise rotating field with $B_0 = 1.1$ mT and frequency $\Omega = 125.7$ rad s$^{-1}$. The video corresponds to Fig.4 of the article.

• VideoS5(.WMV) Videoclip showing a colloidal cluster with the inner trimer subjected to a counterclockwise rotating field with $B_0 = 4.2$ mT and $\Omega = 125.7$ rad s$^{-1}$, while the outer particles are not rotated ($\omega_4 = 0$ rad s$^{-1}$). The video corresponds to Fig.4 of the article.

*ptierno@ub.edu