Mixing Ratio Dependent Complex Coacervation Versus Bicontinuous Gelation Of Pectin
And In Situ Formed Zein Nanoparticles

Supplementary Information

Pectin- Zein Nanoparticle Mixing Ratio Dependent Complex Coacervation Versus Gelation

Priyanka Kaushik1, Kamla Rawat2,3*, V. K. Aswal4, J. Kohlbrecher5 and H. B. Bohidar1,2*

1School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India
2 Special Center for Nanosciences, Jawaharlal Nehru University, New Delhi 110067, India
3Inter University Accelerator Centre, New Delhi 110067, India
4State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, India
5Laboratory for Neutron Scattering, Paul Scherrer Institut, Villigen, Switzerland

*Corresponding authors email: bohi0700@mail.jnu.ac.in, kamla.jnu@gmail.com
Tel: +91 11 26704637, Fax: +91 11 2674 1837

Fig. S1. Variation of absorbance of P-Z complex taken at 205 nm shown as function of mixing ratio. A-D are characteristic transition points depicting formation of complex at A, soluble complex at B, coacervate droplets at C, and gelation in the C-D region. See text for details.

Fig. S2. Variation of viscosity and low frequency storage modulus G₀ of Pectin-Zein complex as a function of mixing ratio (or Zein concentration) measured at 25 °C.
Fig. S3. Variation of elastic (storage) modulus G' of Pectin-Zein complex as a function of frequency at variable mixing ratio (with fixed pectin= 1% (w/v)) measured at 25 °C.

Fig.S4: Variation of $\tan \delta$ of P-Z samples (coacervate and gel) (a) at 0.1% Z and (b) at 0.5% Z as a function of frequency. The measurements were performed at 25 °C using constant oscillation stresses of 6.3 Pa. Solid lines are guide to the eye.
Fig. S5: Variation of low frequency storage modulus G_0 of 2% (w/v) Pectin gel samples shown as function of temperature. Melting profiles were generated by using a temperature ramp of 1 °C/min. Sharp upturn in the data at 40 °C indicated drying of samples.

Fig. S6: Small angle neutron scattering intensity profile, fitting parameters (power-law exponent, and mesh size and cross-sectional radius) and cross-over wave vector of a P-Z (coacervate and gel) (a) 0.1 % and (b) 0.5 % (w/v) Zein at various mixing ratio measured at 25 °C.
Fig. S7: Turbidity titration profile as a function of pectin concentration with 27%v/v ethanol and 0.5%w/v zein.

Fig. S8: Variation of viscosity for pectin concentration.