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S1. Evaporation-driven self-folding of a single suspended graphene sheet

S 1.1 Rectangular/Square graphene

For a rectangular/square graphene (Fig. S1a), the folding line could be the symmetric axis of 

the rectangle/square (Fig.S1), or the diagonal of the square (Fig.S2a), and either of them will 

form an axial symmetric folding. In addition, the square graphene could be folded in central 

symmetric pattern (Fig.S2b).

S 1.1.1 Folding along the symmetric axis

Fig.S1a shows a planar rectangular graphene with length  and width . Assume the 𝑙 𝑤

deformation is unidirectional along its long symmetric axis. Given a bending angle  after 𝜃𝑏

deformation (Fig.S1b), the bending radius is

                                 (S 1.1)
𝑟𝑏 =

𝑙
2𝜃𝑏

The coordinate of the point marked by green is  and the coordinate of the point (0, ‒ 𝑤/2,0)

marked by yellow is , where  and . Based on the full (𝑑,0,ℎ) 𝑑 = 𝑟𝑏sin 𝜃𝑏 ℎ = 𝑟𝑏(1 ‒ 𝑐𝑜𝑠𝜃𝑏)

contact assumption between solid and liquid, these two points should be also on the surface 

of liquid. Then the profile of liquid can be estimated via 

                       (S 1.2)𝑥2 + 𝑦2 + (𝑧 ‒ 𝑐)2 = 𝑟2
𝑐 

With  and , one can have (0, ‒ 𝑤/2,0) (𝑑,0,ℎ)

                       (S 1.3)𝑐 = (𝑑2 + ℎ2 ‒ 𝑤2/4)/2ℎ

and

                           (S 1.4)𝑟𝑐 = 𝑤2/4 + 𝑐2

Due to the minimization of the system energy and the surface energy of liquid, the overall 

configuration of the liquid surface may not be a sphere. Only the molecules in the  and 𝑥 ‒ 𝑧

 planes satisfy Eq. (S1.2). In order to get the overall profile of liquid surface, the total 𝑦 ‒ 𝑧

height of graphene and liquid along the  axis needs to be determined and it is𝑦

                 (S 1.5)ℎ𝑙𝑔 = 𝑟2
𝑐 ‒ 𝑦2 + 𝑐, 𝑦 ∈ [ ‒ 𝑤/2,𝑤/2]
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Take the height of graphene , independent of , the height of liquid is  ℎ𝑔 = ℎ 𝑦 ℎ𝑙 = ℎ𝑙𝑔 ‒ ℎ𝑔

(Figs. S1c-e). Assume the profile of liquid is an arc, it can be determined by the points 

,  and , and could be represented by the radius of curvature,  and (0,𝑦,ℎ𝑙𝑔) (𝑑,𝑦,ℎ) ( ‒ 𝑑,𝑦,ℎ) 𝑟𝑙𝑦

half central angle of the profile of liquid,  (Figs. S1c-e). With these analyses, the profile of 𝜃𝑙𝑦

liquid can be determined in each plane parallel to the  plane in the range of 𝑥 ‒ 𝑧

. So the surface area of liquid exposed to the vacuum is‒ 𝑤/2 ≤ 𝑦 ≤ 𝑤/2

                    (S 1.6)
𝐴𝑙 = 2(𝑤/2

∫
0

2𝑟𝑙𝑦𝜃𝑙𝑦𝑑𝑦 + 𝐴𝑐𝑎𝑝)
where  is the surface area of the spherical cap of liquid 𝐴𝑐𝑎𝑝 = 𝜀(𝑟𝑐 ‒ 𝑤/2)2𝜋𝑟𝑐𝑎𝑝(𝑟𝑐 ‒ 𝑤/2)

at .  is the Heaviside step function and |𝑦| > 𝑤/2 𝜀(𝑟𝑐 ‒ 𝑤/2)

 is the bottom radius of the spherical cap. Similarly, 𝑟𝑐𝑎𝑝 = (𝑟2
𝑏 + (𝑟𝑐 ‒ 𝑤/2)2)/2(𝑟𝑐 ‒ 𝑤/2)

the volume of liquid can be obtained via

  (S 1.7)
𝑉𝑙 = 2(𝑤/2

∫
0

[𝑟 2
𝑙𝑦(𝜃𝑙𝑦 ‒ 𝑠𝑖𝑛𝜃𝑙𝑦𝑐𝑜𝑠𝜃𝑙𝑦) + 𝑟2

𝑏(𝜃𝑏 ‒ 𝑠𝑖𝑛𝜃𝑏𝑐𝑜𝑠𝜃𝑏)]𝑑𝑦 + 𝑉𝑐𝑎𝑝)
where  is the volume of the spherical 𝑉𝑐𝑎𝑝 = 𝜀(𝑟𝑐 ‒ 𝑤/2)𝜋(𝑟 ‒ 𝑤/2)2(𝑟𝑐𝑎𝑝 ‒ (𝑟 ‒ 𝑤/2)/3)

cap of the liquid.

It needs to be mentioned that the expression of  and  are derived based on the 𝐴𝑙 𝑉𝑙

condition , and when , the point  and  are no ℎ|𝑦| = 𝑤/2
𝑙𝑔 > ℎ ℎ|𝑦| = 𝑤/2

𝑙𝑔 ≤ ℎ (0, ‒ 𝑤/2,0) (𝑑,0,ℎ)

longer on the surface of same sphere, a new point  will replace  to generate (𝑑, ‒ 𝑤/2,ℎ) (𝑑,0,ℎ)

a new  and , respectively. The spherical cap will also diminish and , . 𝑟𝑐 𝑐 𝐴𝑐𝑎𝑝 = 𝜋𝑟2
𝑏 𝑉𝑐𝑎𝑝 = 0

The surface area and volume of liquid can still be calculated based on Eqs. (S 1.6) and (S 1.7). 

Once  is obtained, the total energy can be calculated via Eq. (2) in the main text. 𝐴𝑙

Further, if the deformation is along its short symmetric axis, the total energy can also be 

calculated by swapping  and  in the related equations.𝑙 𝑤
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S 1.1.2 Folding along the diagonal axis

As shown in Fig. S2a, when the folding line is the diagonal of the square, given a bending angle 

, the bending radius is𝜃𝑏

                               (S 1.8)
𝑟𝑏 =

2𝑙
2𝜃𝑏

The coordinate of the tip of deformed graphene is , where  and (𝑑,0,ℎ) 𝑑 = 𝑟𝑏sin (𝜃𝑏)

. Plug in  and  into Eq. (S 1.2), one will haveℎ = 𝑟𝑏(1 ‒ 𝑐𝑜𝑠𝜃𝑏) (𝑑,0,ℎ) (0, ‒
2

2
𝑙,0)

                           (S 1.9)
𝑐 =

𝑑2 + ℎ2 ‒ 𝑙2/2
2ℎ

and 

                            (S 1.10)
𝑟𝑐 = 𝑙2

2
+ 𝑐2

After the geometric relationship between solid and liquid are determined, the total energy 

during folding can be calculated by following S1.2.1 and is shown in Fig. S7a.

S 1.1.3 Folding along the central symmetric axis

As shown in Fig. S2b, when the folding occurs along the central symmetric pattern with four 

folding lines, given a bending angle , the bending radius is𝜃𝑏

                             (S 1.11)
𝑟𝑏 =

2𝑙
4𝜃𝑏

The tip coordinate of deformed graphene is , where  and (𝑑,0,ℎ) 𝑑 = 𝑟𝑏sin (𝛼 + 𝜃𝑏)

.  is the angle formed between the  axis and ℎ = 𝑟𝑏(cos (𝛼) ‒ 𝑐𝑜𝑠(𝛼 + 𝜃𝑏)) 𝛼 = arcsin (𝜃𝑏) 𝑧

the line connecting the bending center and middle point of the folding line of graphene. Plug 

in  and  into Eq. (S 1.2), one will have(𝑑,0,ℎ) ( 2
4

𝑙, ‒
2

4
𝑙,0)
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                           (S 1.12)
𝑐 =

𝑑2 + ℎ2 ‒ 𝑙2/4
2ℎ

and

                            (S 1.13)
𝑟𝑐 = 𝑙2

4
+ 𝑐2

After the geometric relationship between solid and liquid are determined, the total energy 

during folding can be calculated by following S 1.3.2 and is shown in Fig. S7a.

S1.2 Circular graphene 

For a circular graphene, the folding may along the axis of symmetry of the circle (Fig. S3). 

These will form an axial symmetric folding. It could also be folded in the central symmetry 

pattern with three folding lines (Fig. S4a) or four folding lines (Fig. S4b).

S 1.2.1 Folding along the symmetric diameter axis

Fig.S3a shows a planar circular graphene with length . Assume the deformation is 𝑙

unidirectional along its symmetric axis. Given a bending angle  after deformation (Fig.S3b), 𝜃𝑏

the bending radius is

                              (S 1.14)
𝑟𝑏 =

𝑙
2𝜃𝑏

The coordinate of the point marked by green is (0, ,0 ) and the coordinate of the tip of ‒ 𝑙/2

folded graphene (marked by yellow) is , where  and (𝑑,0,ℎ) 𝑑 = 𝑟𝑏sin (𝜃𝑏)

. Based on the full contact assumption between solid and liquid, these two ℎ = 𝑟𝑏(1 ‒ cos (𝜃𝑏))

points should be also on the surface of liquid. Then plug in  and  into Eq. (S (𝑑,0,ℎ) (0, ‒ 𝑙/2,0)

1.2), one can get

                          (S 1.15)
𝑐 =

𝑑2 + ℎ2 ‒ 𝑙2/4
2ℎ

and 
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                          (S 1.16)
𝑟𝑐 = 𝑙2

4
+ 𝑐2

Due to the minimization of the system energy and the surface energy of liquid, the overall 

configuration of the liquid surface may not be a sphere. Only the molecules in the  and 𝑥 ‒ 𝑧

 plane satisfy Eq. (S1.2). In order to get the overall profile of liquid surface, the total 𝑦 ‒ 𝑧

height of graphene and liquid along the direction of  axis needs to be determined and it is𝑦

               (S 1.17)ℎ𝑙𝑔 = 𝑟2
𝑐 ‒ 𝑦2 + 𝑐,𝑦 ∈ [ ‒ 𝑙/2,𝑙/2]

The bending angle of graphene at the plane parallel to the  plane is𝑥 ‒ 𝑧

                             (S 1.18)
𝜃𝑏𝑦 =

𝑙2/4 ‒ 𝑦2

𝑟𝑏

And the height of graphene is

                     (S 1.19)ℎ𝑔 = 𝑟𝑏(1 ‒ cos 𝜃𝑏𝑦)

The height of liquid is , and the distance of tip of graphene to the  plane isℎ𝑙 = ℎ𝑙𝑔 ‒ ℎ𝑔 𝑦 ‒ 𝑧

                       (S 1.20)𝑑𝑔 = 𝑟𝑏sin 𝜃𝑏𝑦

Assume the profile of liquid is also an arc, it can be determined by the points , (0,𝑦,ℎ𝑙𝑔)

 and , and could be represented by the radius of curvature, , and half (𝑑𝑔,𝑦,ℎ𝑔) ( ‒ 𝑑𝑔,𝑦,ℎ𝑔) 𝑟𝑙𝑦

central angle of the arc,  (Figs. S3c-e). With these analysis, the profile of liquid can be 𝜃𝑙𝑦

determined in each plane parallel to the  plane in the range of . The 𝑥 ‒ 𝑧 ‒ 𝑙/2 ≤ 𝑦 ≤ 𝑙/2

surface area of liquid exposed to the vacuum is

                    (S 1.21)
𝐴𝑙 = 2( 𝑙/2

∫
0

2𝑟𝑙𝑦𝜃𝑙𝑦𝑑𝑦 + 𝐴𝑐𝑎𝑝)
where  is the surface area of spherical cap of the liquid 

𝐴𝑐𝑎𝑝 = 𝜀(𝑟𝑐 ‒
𝑙
2)2𝜋𝑟𝑐𝑎𝑝(𝑟𝑐 ‒ 𝑙/2)

surface when .  is the Heaviside step function and  |𝑦| > 𝑙/2 𝜀(𝑟𝑐 ‒ 𝑙/2) 𝑟𝑐𝑎𝑝 = 𝑟2
𝑐 ‒ 𝑙2/4 + 𝑐

is the bottom radius of the spherical cap. Similarly, the volume of liquid can be obtained via 

 (S 1.22)
𝑉𝑙 = 2( 𝑙/2

∫
0

[𝑟 2
𝑙𝑦(𝜃𝑙𝑦 ‒ 𝑠𝑖𝑛𝜃𝑙𝑦𝑐𝑜𝑠𝜃𝑙𝑦) + 𝑟2

𝑏(𝜃𝑏𝑦 ‒ 𝑠𝑖𝑛𝜃𝑏𝑦𝑐𝑜𝑠𝜃𝑏𝑦)]𝑑𝑦 + 𝑉𝑐𝑎𝑝)
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where  is the volume of spherical cap of 𝑉𝑐𝑎𝑝 = 𝜀(𝑟𝑐 ‒ 𝑙/2)𝜋(𝑟𝑐 ‒ 𝑙/2)2(𝑟𝑐𝑎𝑝 ‒ (𝑟𝑐 ‒ 𝑙/2)/3)

the liquid.

Once  is obtained, the total energy can be calculated by following the type of Eq. (2) 𝐴𝑙

in the main text.

S 1.2.2 Central symmetric folding with three folding lines

When the circular graphene folds in the central symmetric pattern with three folding lines, as 

illustrated in Fig. S4a, given a bending angle , the bending radius is𝜃𝑏

                             (S 1.23)
𝑟𝑏 =

𝑙
4𝜃𝑏

The coordinate of the tip of deformed graphene is , where  and (𝑑,0,ℎ) 𝑑 = 𝑟𝑏sin (𝛼 + 𝜃𝑏)

.  is the angle formed between the  axis and the ℎ = 𝑟𝑏(cos (𝛼) ‒ 𝑐𝑜𝑠(𝛼 + 𝜃𝑏)) 𝛼 = asin (𝜃𝑏) 𝑧

line connecting the bending center and middle point of the folding axis of graphene. Plug in

 and  into Eq. (S1.2), one will have(𝑑,0,ℎ) (1
4

𝑙, ‒
3

4
𝑙,0)

                        (S 1.24)
𝑐 =

𝑑2 + ℎ2 ‒ 𝑙2/4
2ℎ

and

                         (S 1.25)
𝑟𝑐 = 𝑙2

4
+ 𝑐2

After the geometric relationship between solid and liquid are determined, the total energy 

during folding can be calculated by following S1.3.2 and is shown in Fig. S7b.

S 1.2.3 Central symmetric folding with four folding lines

When the circular graphene folds in the central symmetric pattern with four folding lines, as 

illustrated in Fig. S4b, given a bending angle , the bending radius can be determined, which 𝜃𝑏

is
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                           (S 1.26)
𝑟𝑏 =

(2 ‒ 2)𝑙
4𝜃𝑏

The coordinate of tip of the deformed graphene is , where  and (𝑑,0,ℎ) 𝑑 = 𝑟𝑏sin (𝛼 + 𝜃𝑏)

.  is the angle formed between the  axis ℎ = 𝑟𝑏(cos (𝛼) ‒ 𝑐𝑜𝑠(𝛼 + 𝜃𝑏)) 𝛼 = asin ( 2
2 ‒ 2

𝜃𝑏) 𝑧

and the line connecting the bending center and middle point of the folding axis of graphene. 

Plug in  and  into Eq. (S 1.2), one will have(𝑑,0,ℎ) (1
4

𝑙, ‒
3

4
𝑙,0)

                       (S 1.27)
𝑐 =

𝑑2 + ℎ2 ‒ 𝑙2/4
2ℎ

and

                        (S 1.28)
𝑟𝑐 = 𝑙2

4
+ 𝑐2

After the geometric relationship between solid and liquid are determined, the total energy 

during folding can be calculated by following S1.3.2 and is shown in Fig. S7b.

S1.3 Triangular graphene

For a triangular graphene, the folding line could be the axis of symmetry of the triangle (Fig. 

S5). This will form axial symmetric folding. It could also be folded in the central symmetric 

pattern with three folding lines (Fig. S6).

S 1.3.1 Axial symmetric folding 

Fig.S5 shows a planar triangular graphene with an equilateral edge length , given a bending 𝑙

angle , the bending radius is𝜃𝑏

                          (S 1.29)
𝑟𝑏 =

𝑙
2𝜃𝑏

The coordinate of the tip of deformed graphene is , where  and (𝑑,0,ℎ) 𝑑 = 𝑟𝑏sin (𝜃𝑏)

. Plug in  and  into Eq. (S 1.2), one will haveℎ = 𝑟𝑏(1 ‒ 𝑐𝑜𝑠(𝜃𝑏)) (𝑑,0,ℎ) (0,
3

2
𝑙,0)
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                        (S 1.30)
𝑐 =

𝑑2 + ℎ2 ‒ 3𝑙2/4
2ℎ

and

                        (S 1.31)
𝑟𝑐 = 3𝑙2

4
+ 𝑐2

After the geometric relationship between solid and liquid are determined, the total energy 

during folding can be calculated by following S1.2.1 and is shown in Fig. S7c.

S 1.3.2 Central symmetric folding

Fig. S6a shows a planar triangular graphene with length . Assume the deformation is in the 𝑙

central symmetric pattern with three folding lines. Given a bending angle  after 𝜃𝑏

deformation, the bending radius is

                          (S 1.32)
𝑟𝑏 =

3𝑙
4𝜃𝑏

The coordinate of the point marked by green is  and coordinate of tip of the ( 3
12

𝑙, ‒
1
4

𝑙,0)
deformed graphene is  (marked by yellow), where  and (𝑑,0,ℎ) 𝑑 = 𝑟𝑏sin (𝛼 + 𝜃𝑏)

.  is the angle formed between the  axis and ℎ = 𝑟𝑏(cos (𝛼) ‒ 𝑐𝑜𝑠(𝛼 + 𝜃𝑏)) 𝛼 = asin (𝜃𝑏/3) 𝑧

the line connecting the bending center and middle point of the folding line of graphene (when 

the graphene is folded into a closed form, , and it could be derived that the maximum 𝛼 + 𝜃𝑏 = 𝜋

value of  is ). Plug in  and  into Eq. (S 1.2), one will have𝜃𝑏 0.72𝜋 (𝑑,0,ℎ) ( 3
12

𝑙, ‒
1
4

𝑙,0)

                        (S 1.33)
𝑐 =

𝑑2 + ℎ2 ‒ 𝑙2/12
2ℎ

and

                       (S 1.34)𝑟𝑐 = 𝑙2/12 + 𝑐2

Due to the minimization of the system energy and the surface energy of liquid, the overall 

configuration of the liquid surface may not be a sphere and needs to be analyzed along the  𝑧
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axis. Consider the geometry of triangle, the total angle formed by graphene and liquid 

(Figs.S6c-e) is

                      (S 1.35)𝜃𝑙𝑔 = 𝜃𝑙𝑧 + 𝜃𝑔𝑧 = 𝜋/3

the radius of curvature of liquid in the plane parallel to the  plane is 𝑥 ‒ 𝑦

                  (S 1.36)𝑟𝑙𝑧 = 𝑟2
𝑐 ‒ (𝑧 ‒ 𝑐)2, 𝑧 ∈ [0,𝑟𝑐 + 𝑐]

and the width of deformed graphene is

           (S 1.37)
𝑤𝑔𝑧 =‒

2
3

3𝑟𝑏[acos [𝑐𝑜𝑠𝛼 ‒
𝑧
𝑟𝑏

] ‒ 𝛼] + 𝑙/2

Thus, the angle formed by graphene is

                         (S 1.38)
𝜃𝑔𝑧 = asin (𝑤𝑔𝑧

2𝑟𝑙𝑧
)

The surface area of liquid can be determined via

                    (S 1.39)
𝐴𝑙 = 3

ℎ

∫
0

2𝜃𝑙𝑧𝑟𝑙𝑧𝑑𝑧 + 𝐴𝑐𝑎𝑝

where  is the surface area of the spherical cap of liquid and 𝐴𝑐𝑎𝑝 = 2𝜋𝑟𝑐𝑎𝑝(𝑟𝑐 + 𝑐 ‒ ℎ)

 is the bottom radius of the spherical cap. Similarly, the volume of 𝑟𝑐𝑎𝑝 = 𝑟2
𝑐 ‒ (ℎ ‒ 𝑐)2

liquid can be obtained via

              (S 1.40)
𝑉𝑙 = 3

ℎ

∫
0

(𝑤𝑔𝑧𝑟𝑙𝑧𝑐𝑜𝑠𝜃𝑔𝑧/2 + 𝜃𝑙𝑧𝑟2
𝑙𝑧)𝑑𝑧 + 𝑉𝑐𝑎𝑝

where  is the volume of spherical cap of the 𝑉𝑐𝑎𝑝 = 𝜋(𝑟𝑐 + 𝑐 ‒ ℎ)2(𝑟𝑐𝑎𝑝 ‒ (𝑟𝑐 + 𝑐 ‒ ℎ)/3)

liquid.

After  is calculated, the total energy can be obtained by following the type of Eq. (2) 𝐴𝑙

in the main text.
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S2. Determination of elastocapillary length

S2.1 Rectangular graphene 

Eq. (2) in the main text gives the total energy during folding

                   (S 2.1)
𝐸𝑡𝑜𝑡 =

2𝐵𝜃2
𝑏

𝜂
+ 𝐴𝑙𝛾𝑙 + 𝑙𝑤𝛾𝑠 + 𝑙𝑤𝛾𝑖

where  is the deformation energy,  is the surface energy of liquid, 𝐸𝑑𝑒𝑓 = 2𝐵𝜃2
𝑏/𝜂 𝐸 𝑙

𝑠𝑢𝑟𝑓 = 𝐴𝑙𝛾𝑙

 is the surface energy of solid and  is the interfacial energy between 𝐸 𝑔
𝑠𝑢𝑟𝑓 = 𝑙𝑤𝛾𝑠 𝐸𝑖𝑛𝑡𝑒𝑟 = 𝑙𝑤𝛾𝑖

solid and liquid. To determine the elastocapillary length, assume the solid has been folded to a 

whole circle very closely ( ), the surface area of liquid can 𝜃𝑏 + ∆𝜃𝑏 = 𝜋,∆𝜃𝑏 > 0 𝑎𝑛𝑑 ∆𝜃𝑏→0

be estimated by 

             (S 2.2)
𝐴𝑙 = 2𝜋( 𝑙

2𝜃𝑏
)2 + (2𝜋( 𝑙

2𝜃𝑏
) ‒ 𝑙)𝑤

Suppose there is no detaching happens, , and the energy competition only ∆𝐸𝑔 = ∆𝐸𝑖 = 0

involves  and . Consider a critical condition,∆𝐸𝑑𝑒𝑓 ∆𝐸 𝑙
𝑠𝑢𝑟𝑓

                     (S 2.3)∆𝐸𝑑𝑒𝑓 = |∆𝐸 𝑙
𝑠𝑢𝑟𝑓|

which yields
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2𝐵𝜋2

𝜂
‒

2𝐵(𝜋 ‒ Δ𝜃𝑏)2

𝜂

= 𝛾𝑙[2𝜋( 𝑙
2(𝜋 ‒ Δ𝜃𝑏))2 ‒ 2𝜋( 𝑙

2𝜋)2 + (2𝜋( 𝑙
2(𝜋 ‒ Δ𝜃𝑏)) ‒ 𝑙)𝑤 ‒ (2𝜋( 𝑙

2𝜋) ‒ 𝑙)𝑤]
(S 2.4)

left side of Eq. (S 2.4) leads to

            (S 2.5)

2𝐵𝜋2

𝜂
‒

2𝐵(𝜋 ‒ Δ𝜃𝑏)2

𝜂
=

2𝐵
𝜂 (2𝜋Δ𝜃𝑏 ‒ Δ𝜃2

𝑏)

and right side of Eq. (S 2.4) leads to

                        

𝛾𝑙[2𝜋( 𝑙
2(𝜋 ‒ Δ𝜃𝑏))2 ‒ 2𝜋( 𝑙

2𝜋)2 + (2𝜋( 𝑙
2(𝜋 ‒ Δ𝜃𝑏)) ‒ 𝑙)𝑤 ‒ (2𝜋( 𝑙

2𝜋) ‒ 𝑙)𝑤]
= 𝛾𝑙𝑙

2[(2𝜋𝜂 + 2𝜋2)Δ𝜃𝑏 ‒ (2𝜋 + 𝜂)Δ𝜃2
𝑏

2𝜋𝜂(𝜋 ‒ Δ𝜃𝑏)2 ]
(S 2.6)

Let

2𝐵
𝜂 (2𝜋Δ𝜃𝑏 ‒ Δ𝜃2

𝑏) = 𝛾𝑙𝑙
2[(2𝜋𝜂 + 2𝜋2)Δ𝜃𝑏 ‒ (2𝜋 + 𝜂)Δ𝜃2

𝑏

2𝜋𝜂(𝜋 ‒ Δ𝜃𝑏)2 ]

                (S 2.7)

→𝑙 =
𝐵

𝜂𝛾𝑙

2𝜋𝜂(8𝜋3 ‒ 10𝜋2∆𝜃 + 4𝜋∆𝜃2 ‒
∆𝜃3

2 )
‒ 2𝜋∆𝜃 ‒ 𝜂∆𝜃 + 4𝜋𝜂 + 4𝜋2

Plug in , we can getΔ𝜃𝑏 = 0

                         (S 2.8)
𝑙𝑒𝑐 = 4𝜋3

𝜂 + 𝜋

𝐵
𝛾𝑙

S2.2 Circular graphene

As has been proved in S1.2 (Fig. S7b), the axial symmetric folding pertains the lowest energy 

when the volume of water is small enough and the elastocapillary length will be derived based 

on the axial symmetry folding pattern. Given the bending stiffness of graphene =2.31𝐵

 J1 and the surface tension of water =0.0613 , by varying the length of the × 10 ‒ 19 𝛾𝑙 𝐽/𝑚22

graphene, the critical length  can be obtained via𝑙 𝑔
𝑒𝑐
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                      (S 2.9)
| ∆𝐸𝑑𝑒𝑓

∆𝐸 𝑙
𝑠𝑢𝑟𝑓

|𝜃𝑏 = 𝜋 = 1

nm and the geometric factor can be calculated via . This geometric 𝑙 𝑔
𝑒𝑐 = 12.27 𝑠 = 𝑙 𝑔

𝑒𝑐/ 𝐵/𝛾𝑙

factor is a constant for a circular graphene and is independent of the dimension of liquid and 

graphene. Therefore, the elastocapillary length is

                         (S 2.10)
𝑙𝑒𝑐 = 6.32

𝐵
𝛾𝑙

S2.3 Triangular graphene

As has been proved in S1.3 (Fig. S7c), the central symmetric folding always pertains the lowest 

energy and the elastocapillary length will be derived based on the central symmetric folding 

pattern. Given the bending stiffness of graphene =2.31  J1 and the surface tension of 𝐵 × 10 ‒ 19

water =0.0613 , by varying the length of the graphene, the critical length can be 𝛾𝑙 𝐽/𝑚22

obtained via

                      (S 2.11)
| ∆𝐸𝑑𝑒𝑓

∆𝐸 𝑙
𝑠𝑢𝑟𝑓

|𝜃𝑏 = 0.72𝜋 = 1

 nm and the geometric factor can be calculated via . This geometric 𝑙 𝑔
𝑒𝑐 = 6.70 𝑠 = 𝑙 𝑔

𝑒𝑐/ 𝐵/𝛾𝑙

factor is a constant for a triangular graphene and is independent of the dimension of liquid and 

graphene. Therefore, the elastocapillary length is

                         (S 2.12)
𝑙𝑒𝑐 = 3.45

𝐵
𝛾𝑙

Note that in comparison with rectangular graphene, the geometric factors in Eqs. (S 2.10) and 

(S 2.12) are given as a specific value for both circular and triangular graphene because the 

explicit geometric relationship at their critical folding condition cannot be formulated and 

numerical iterative approaches were used to solve Eqs. (S 2.9) and (S 2.11).
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S3. Determination of wet-capillary length when considering surface wettability of solid

S 3.1 Rectangular and Circular graphene

Based on Eq. (7) in the main manuscript, define

                   (S 3.1)
𝛾𝑑 =‒

𝐵𝜃2
𝑏

2𝑙2
+ 𝛾𝑙(1 + 𝑐𝑜𝑠𝜃𝑐)
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 yields 𝛾𝑑 = 0

                      (S 3.2)
𝑙 = 𝜃𝑟/𝑐

𝑏,𝑐
𝐵

2𝛾𝑙(1 + 𝑐𝑜𝑠𝜃𝑐)

where  is the ultimate bending angle for rectangular and circular graphene, and , 𝜃𝑟/𝑐
𝑏,𝑐 𝜃𝑟/𝑐

𝑏,𝑐 = 𝜋

and thus we have 

                      (S 3.3)
𝑙𝑤𝑐 = 𝜋

𝐵
2𝛾𝑙(1 + 𝑐𝑜𝑠𝜃𝑐)

S 3.2 Triangular graphene

Based on the geometric analysis, replace  by  in Eq. (S 3.1), we can get𝑙 3𝑙/4

                 (S 3.4)
𝛾𝑑 =‒

8𝐵𝜃2
𝑏

3𝑙2
+ 𝛾𝑙(1 + 𝑐𝑜𝑠𝜃𝑐)

 yields𝛾𝑑 = 0

                     (S 3.5)
𝑙 = 𝜃 𝑡

𝑏,𝑐
8𝐵

3𝛾𝑙(1 + 𝑐𝑜𝑠𝜃𝑐)

where  is the ultimate bending angle for triangle and , and thus we have𝜃 𝑡
𝑏,𝑐 𝜃 𝑡

𝑏,𝑐 = 0.72𝜋

                     (S 3.6)
𝑙𝑤𝑐 =

2.9𝜋
3

𝐵
2𝛾𝑙(1 + 𝑐𝑜𝑠𝜃𝑐)
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S4. Energy competition at the vdW energy-driven self-folding

S 4.1 Rectangular graphene

When the graphene is self-folded into a “racket-like” pattern, the total energy is

               (S 4.1)
𝐸𝑡𝑜𝑡 =

𝐵𝑙𝑏𝑤

2𝑟2
𝑏

+ 𝛾𝑏𝑙𝑜𝑤 + 𝛾𝑠(2𝑙𝑤 ‒ 2𝑙𝑜𝑤)

Further, consider 

                            (S 4.2)
𝑟𝑏 =

𝑙
2𝜋

‒
𝑙𝑜

𝜋

the total energy becomes a function of overlapping length, which is

              (S 4.3)
𝐸𝑡𝑜𝑡 =

2𝜋2𝐵𝑤
𝑙 ‒ 2𝑙𝑜

+ 𝛾𝑏𝑙𝑜𝑤 + 𝛾𝑠𝑤(2𝑙 ‒ 2𝑙𝑜)

And the energy ratio is

         (S 4.4)

∆𝐸𝑑𝑒𝑓

∆(𝐸𝑣𝑑𝑊 + 𝐸 𝑔
𝑠𝑢𝑟𝑓)

= 4𝜋2𝐵
1

(𝛾𝑏 ‒ 2𝛾𝑠)[(𝑙 ‒ 2𝑙𝑜)[𝑙 ‒ 2(𝑙𝑜 + ∆𝑙𝑜)]]

Let 𝑙𝑜 = 0

                 (S 4.5)

∆𝐸𝑑𝑒𝑓

∆(𝐸𝑣𝑑𝑊 + 𝐸 𝑠
𝑠𝑢𝑟𝑓)

=
4𝜋2𝐵

(𝛾𝑏 ‒ 2𝛾𝑠)(𝑙2 ‒ 2𝑙∆𝑙𝑜)

When , the critical length can be obtained, and it is∆𝑙𝑜 = 0

                        (S 4.6)
𝑙𝑐𝑟 = 2𝜋

𝐵

|𝛾𝑏 ‒ 2𝛾𝑠|

S 4.2 Circular graphene

The total energy during self-folding of a circular shaped graphene is

              (S 4.7)
𝐸𝑡𝑜𝑡 =

𝐵𝐴𝑏

2𝑟2
𝑏

+ 𝛾𝑏𝐴𝑜 + 𝛾𝑠(2𝐴 ‒ 2𝐴𝑜)

where  is the area of deformed part,  is the area of overlapped part and  is the 𝐴𝑏 𝐴𝑜 2𝐴 ‒ 2𝐴𝑜

area exposing to the air/vacuum. Define , where  is the radius of graphene and  ℎ = 𝑟𝑠 ‒ 𝑙𝑜 𝑟𝑠 𝑙𝑜

is the overlap length, one can find , and 𝛼 = acos (ℎ/𝑟𝑠)
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             (S 4.8)
𝐴𝑜 = acos (𝑟𝑠 ‒ 𝑙𝑜

𝑟𝑠
)𝑟2

𝑠 ‒ (𝑟𝑠 ‒ 𝑙𝑜) 2𝑟𝑠𝑙𝑜 ‒ 𝑙2
𝑜

and

        (S 4.9)
𝐴𝑏 = 𝜋𝑟2

𝑠 ‒ 2acos (𝑟𝑠 ‒ 𝑙𝑜

𝑟𝑠
)𝑟2

𝑠 ‒ 2(𝑟𝑠 ‒ 𝑙𝑜) 2𝑟𝑠𝑙𝑜 ‒ 𝑙2
𝑜

So

           (S 4.10)
𝐸𝑑𝑒𝑓 =

𝐵𝜋2[𝜋𝑟2
𝑠 ‒ 2acos (𝑟𝑠 ‒ 𝑙𝑜

𝑟𝑠
)𝑟2

𝑠 + 2(𝑟𝑠 ‒ 𝑙𝑜) 2𝑟𝑠𝑙𝑜 ‒ 𝑙2
𝑜]

2(𝑟 ‒ 𝑙𝑜)2

        (S 4.11)
𝐸𝑣𝑑𝑊 = 𝛾𝑏[acos (𝑟𝑠 ‒ 𝑙𝑜

𝑟𝑠
)𝑟2

𝑠 ‒ (𝑟𝑠 ‒ 𝑙𝑜) 2𝑟𝑠𝑙𝑜 ‒ 𝑙2
𝑜]

and 

  (S 4.12)
𝐸 𝑔

𝑠𝑢𝑟𝑓 = 𝛾𝑠[2𝜋𝑟2
𝑠 ‒ 2acos (𝑟𝑠 ‒ 𝑙𝑜

𝑟𝑠
)𝑟2

𝑠 + 2(𝑟𝑠 ‒ 𝑙𝑜) 2𝑟𝑠𝑙𝑜 ‒ 𝑙2
𝑜]

the total energy is

𝐸𝑡𝑜𝑡

=

𝐵𝜋2[𝜋𝑟2
𝑠 ‒ 2acos (𝑟𝑠 ‒ 𝑙𝑜

𝑟𝑠
)𝑟2

𝑠 + 2(𝑟𝑠 ‒ 𝑙𝑜) 2𝑟𝑠𝑙𝑜 ‒ 𝑙2
𝑜]

2(𝑟 ‒ 𝑙𝑜)2
+ 𝛾𝑏[acos (𝑟𝑠 ‒ 𝑙𝑜

𝑟𝑠
)𝑟2

𝑠 ‒ (𝑟𝑠 ‒ 𝑙𝑜) 2𝑟𝑠𝑙𝑜 ‒ 𝑙2
𝑜]

+ 𝛾𝑠[2𝜋𝑟2
𝑠 ‒ 2acos (𝑟𝑠 ‒ 𝑙𝑜

𝑟𝑠
)𝑟2

𝑠 + 2(𝑟𝑠 ‒ 𝑙𝑜) 2𝑟𝑠𝑙𝑜 ‒ 𝑙2
𝑜]

  (S 4.13)

Energy competition can be calculated based on Eq. (12) in the main manuscript and the critical 

length for self-folding can be evaluated by

                   (S 4.14)
| ∆𝐸𝑑𝑒𝑓

∆𝐸 𝑔
𝑠𝑢𝑟𝑓 + ∆𝐸𝑣𝑑𝑊

|𝑙𝑜 = 0 = 1

Given the bending stiffness of graphene =2.31  1 and the surface energy density of  𝐵 × 10 ‒ 19 𝐽

graphene =0.047  and the binding energy density of graphene , by 𝛾𝑠 𝐽/𝑚22 𝛾𝑏 =‒ 0.232𝐽/𝑚22

varying the length of the graphene, the critical length can be obtained by solving Eq. (S 4.14) 
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and we get  nm and the geometric factor can be obtained via 𝑙 𝑔
𝑐𝑟 = 9.87

=11.72. This geometric factor is a constant for the “racket-like” pattern 𝑘 = 𝑙 𝑔
𝑐𝑟/ 𝐵/|𝛾𝑏 ‒ 2𝛾𝑠|

of the circular graphene and is independent of the dimension of graphene. Therefore, the critical 

self-folding length is

                     (S 4.15)
𝑙𝑐𝑟 = 11.72

𝐵

|𝛾𝑏 ‒ 2𝛾𝑠| 

S 4.3 Triangular graphene

After the first stage of evaporation, one of the tips of triangle unfolds into a flat pattern while 

the other two tips keep folding and finally a “Cone-like” pattern will be obtained (Fig.1c). This 

is a three-dimensional pattern and the geometric feature of this pattern needs to be discussed.

As shown in Fig. S9a, suppose the two lower tips of the triangle will be folded while the 

top tip of the triangle will not. Further, suppose the folding line of the left lower tip is parallel 

to the right boundary of triangle and the folding line of the right lower tip is parallel to the left 

boundary of triangle. The overlap length  is defined as the distance of the tip of triangle to 𝑙𝑜

the folding line. So, if  increase, the folding line will propagate inside the triangle. The 𝑙𝑜

absolute values of slope of the folding lines are the same and is  for the right bundles 𝑘 = 3

and  for the left bundles. 𝑘 =‒ 3

Consider the symmetry of the folding lines, we will analyze the right bundles. For a given 

length  and the overlap length , the function of folding line is𝑙 𝑙𝑜

                     (S 4.16)
𝑦 = 3𝑥 ‒

3
2

𝑙 + 2𝑙𝑜

The coordinate of the interception points between the folding line and the axis of symmetry of 

the triangle is

                (S 4.17)(0, ‒
3

2
𝑙 + 2𝑙𝑜),(0 ≤ 𝑙𝑜 ≤

3
4

𝑙)
and the coordinate of the interception points between the folding line and bottom boundary of 
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triangle is

                (S 4.18)( 𝑙
2

‒
2 3

3
𝑙𝑜,0),(0 ≤ 𝑙𝑜 ≤

3
4

𝑙)

Further, suppose an arc centered at  with a radius of , if the arc has an (0, ‒
3

2
𝑙 + 2𝑙𝑜) 𝑟𝑎𝑟𝑐

interception point with the triangle, the radius should satisfy

                (S 4.19)

3
2

𝑙 ‒ 2𝑙𝑜 ≤ 𝑟𝑎𝑟𝑐 ≤ 3𝑙 ‒ 2𝑙𝑜

And the equation of arc satifies

   (S 4.20)
𝑥2 + (𝑦 +

3
2

𝑙 ‒ 2𝑙𝑜)2 = 𝑟 2
𝑎𝑟𝑐( 3

2
𝑙 ‒ 2𝑙𝑜 ≤ 𝑟𝑎𝑟𝑐 ≤ 3𝑙 ‒ 2𝑙𝑜)

During the self-folding of “Cone-like” pattern, averaged radius of curvature of the atoms on 

the same arc is a function of , which is discussed below.𝑟𝑎𝑟𝑐

The intersection point between the arc and the right boundary of triangle can be determined 

by

     (S 4.21)
{ 𝑦 =‒ 3𝑥 +

3
2

𝑙, (0 ≤ 𝑥 ≤
𝑙
2)

𝑥2 + (𝑦 +
3

2
𝑙 ‒ 2𝑙𝑜)2 = 𝑟 2

𝑎𝑟𝑐,( 3
2

𝑙 ‒ 2𝑙𝑜 ≤ 𝑟𝑎𝑟𝑐 ≤ 3𝑙 ‒ 2𝑙𝑜) �
and the intersection point between the arc and the bottom boundary of triangle can be 

determined by

     (S 4.22)
{ 𝑦 = 0, (0 ≤ 𝑥 ≤

𝑙
2)

𝑥2 + (𝑦 +
3

2
𝑙 ‒ 2𝑙𝑜)2 = 𝑟 2

𝑎𝑟𝑐,( 3
2

𝑙 ‒ 2𝑙𝑜 ≤ 𝑟𝑎𝑟𝑐 ≤ 3𝑙 ‒ 2𝑙𝑜) �
After we get the intersection points, we may have three conditions:

(I) The arc only has two symmetric intersection points with the bottom boundary of 

triangle (Fig. S9b(I)), and in this case, the length of arc is

                         (S 4.23)𝑙𝑎𝑟𝑐 = 2𝑟𝑎𝑟𝑐𝛼𝑏
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where

                       (S 4.24)
𝛼𝑏 = arcsin ( 𝑥𝑏

𝑟𝑎𝑟𝑐
)

 is the  coordinate of the intersection point. Further, the length of the central part of the 𝑥𝑏 𝑥

arc is

                  (S 4.25)
𝑙 𝑐
𝑎𝑟𝑐 =

𝜋
3

𝑟𝑎𝑟𝑐,(𝑙𝑎𝑟𝑐 > 𝑙 𝑐
𝑎𝑟𝑐)

Therefore, the average radius of curvature of the folded triangle is

                          (S 4.26)
𝑟𝑎𝑣𝑒 =

𝑙 𝑐
𝑎𝑟𝑐

2𝜋
 

(II) The arc has two intersection points with the left and right boundary of triangle 

respectively and two symmetric intersection points with the bottom boundary of 

triangle (Fig. S9b(II)), and in this case, the length of arc is

                  (S 4.27)𝑙𝑎𝑟𝑐 = 2𝑟𝑎𝑟𝑐(𝛼𝑟𝑙 + 𝛼𝑏 ‒ 𝛼𝑟𝑟)

where

     (S 4.28)
𝛼𝑟𝑙 = arcsin ( 𝑥𝑟𝑙

𝑟𝑎𝑟𝑐
),𝛼𝑏 = arcsin ( 𝑥𝑏

𝑟𝑎𝑟𝑐
),𝛼𝑟𝑟 = arcsin ( 𝑥𝑟𝑟

𝑟𝑎𝑟𝑐
)

and the length of the central part of the arc is 

                   (S 4.29)
𝑙 𝑐
𝑎𝑟𝑐 =

𝜋
3

𝑟𝑎𝑟𝑐,(𝑙𝑎𝑟𝑐 > 𝑙 𝑐
𝑎𝑟𝑐)

Therefore, the averaged radius of curvature of the folded triangle is

                         (S 4.30)
𝑟𝑎𝑣𝑒 =

𝑙 𝑐
𝑎𝑟𝑐

2𝜋

(III) The arc only has one intersection point with the left and right boundary of triangle 

respectively (Fig. S9c(III)), and in this case, the length of arc is

                       (S 4.31)𝑙𝑎𝑟𝑐 = 2𝑟𝑎𝑟𝑐𝛼𝑟

where 

                      (S 4.32)
𝛼𝑟 = arcsin ( 𝑥𝑟

𝑟𝑎𝑟𝑐
)
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And the length of the central part of the arc is

                   (S 4.33)
𝑙 𝑐
𝑎𝑟𝑐 =

𝜋
3

𝑟𝑎𝑟𝑐,(𝑙𝑎𝑟𝑐 < 𝑙 𝑐
𝑎𝑟𝑐)

Therefore, the average radius of curvature of the folded triangle is

                          (S 4.34)
𝑟𝑎𝑣𝑒 =

𝑙 𝑐
𝑎𝑟𝑐

2𝜋

After the length of arc and average radius of curvature are determined, the energy of the folded 

“Cone-like” pattern can be calculated. Given the equilibrium distance  between the overlapped 𝑡

part of graphene, the deformation energy is

                  (S 4.35)

𝐸𝑑𝑒𝑓 =
𝐵𝜋
𝑡

3𝑙 ‒ 2𝑙𝑜

∫
3

2
𝑙 ‒ 2𝑙𝑜

ln (𝑟𝑒

𝑟𝑖
)𝑑𝑟𝑎𝑟𝑐

where

                         (S 4.36)
𝑟𝑖 =

𝑙𝑎𝑟𝑐 ‒ 𝜋𝑡𝑁2

2𝜋𝑁

and 

                            (S 4.37)𝑟𝑒 = 𝑟𝑖 + 𝑁𝑡

 is the number of folded rings.𝑁 = 𝑙𝑎𝑟𝑐/2𝜋𝑟𝑎𝑣𝑒

The binding energy is

         (S 4.38)

𝐸𝑣𝑑𝑊 = 𝛾𝑏

3𝑙 ‒ 2𝑙𝑜

∫
3

2
𝑙 ‒ 2𝑙𝑜

2𝑙𝑎𝑟𝑐 ‒ (2𝜋𝑟𝑖 + 𝜋𝑡2) ‒ (2𝜋𝑟𝑒 ‒ 𝜋𝑡2)
2

𝑑𝑟𝑎𝑟𝑐

and the surface energy is

              (S 4.39)

𝐸 𝑔
𝑠𝑢𝑟𝑓 = 2𝜋𝛾𝑠

3𝑙 ‒ 2𝑙𝑜

∫
3

2
𝑙 ‒ 2𝑙𝑜

(𝑟𝑖 + 𝑟𝑒 )𝑑𝑟𝑎𝑟𝑐

Energy competition can be calculated with Eq. (12) in the main manuscript and the critical 
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length for self-folding can be evaluated by

                   (S 4.40)
| ∆𝐸𝑑𝑒𝑓

∆𝐸 𝑠
𝑠𝑢𝑟𝑓 + ∆𝐸𝑣𝑑𝑊

|𝑙𝑜 = 0 = 1

Given the bending stiffness of graphene =2.31  1, the surface energy density of  𝐵 × 10 ‒ 19 𝐽

graphene =0.047  and the binding energy density of graphene , by 𝛾𝑠 𝐽/𝑚22 𝛾𝑏 =‒ 0.232𝐽/𝑚22

varying the length of the graphene, the critical length can be obtained by solving Eq. (S 4.40) 

and we get  nm and the geometric factor can be obtained via 𝑙 𝑔
𝑐𝑟 = 11.42

=13.57. This geometric factor is a constant for the “cone-like” pattern of 𝑘 = 𝑙 𝑔
𝑐𝑟/ 𝐵/|𝛾𝑏 ‒ 2𝛾𝑠|

the triangular graphene and is independent of the dimension of graphene. Therefore, the critical 

self-folding length is

                     (S 4.41)
𝑙𝑐𝑟 = 13.57

𝐵

|𝛾𝑏 ‒ 2𝛾𝑠| 

Similar to the determination of elastocapillary length in section 2.2 and section 2.3, the 

geometric factors in Eqs. (S4.15) and (S4.41) are given with a specific value for both circular 

and triangular graphene because the explicit geometric relationship at their critical folding 

condition cannot be formulated and numerical iterative approaches were used to solve Eqs. (S 

4.14) and (S 4.40).

Reference:
1. Y. Wei, B. Wang, J. Wu, R. Yang and M. L. Dunn, Nano letters, 2013, 13, 26-30.
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Figure S1. Evaporation-driven self-folding of a single suspended rectangular graphene sheet. 
Schematics of (a) planar rectangular graphene, and (b) suspended in liquid. (c) The variation of profile of 
graphene and liquid along the  direction at (c) , (d)  and (e) .𝑦 𝑦 = 0 𝑦 = 𝑤/4 𝑦 = 𝑤/2
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Figure S2. Schematic figures of the square graphene folded in different patterns. (a) Schematics of 
planar square graphene, and after suspended in liquid. (b) Schematics of planar square graphene, and after 
suspended in liquid. The green dotted line shows the folding line of the graphene. 
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Figure S3. Evaporation-driven self-folding of a single suspended circular graphene sheet. Schematics 
of (a) planar circular graphene, and (b) suspended in liquid. (c) The variation of profile of graphene and 
liquid along the  direction at (c) , (d)  and (e) .𝑦 𝑦 = 0 𝑦 = 𝑙/4 𝑦 = 𝑙/2
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Figure S4. Schematic figures of the circular graphene folded in different patterns. (a) Schematics of 
planar circular graphene, and after suspended in liquid. (b) Schematics of planar circular graphene, and after 
suspended in liquid. The green dotted line shows the folding line of the graphene.
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Figure S5. Schematics of planar triangular graphene, and after suspended in liquid. The green dotted 
line shows the folding line of the graphene.
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Figure S6. Evaporation-driven self-folding of a single suspended triangular graphene sheet. 
Schematics of (a) planar triangular graphene, and (b) suspended in liquid. (c) The variation of profile of 
graphene and liquid along the  direction at (c) , (d)  and (e) .𝑧 𝑧 = 0 𝑧 = ℎ/2 𝑧 = ℎ
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Figure S7. The energy variation with water volume for self-folding (a) square graphene (b) circular graphene 
and (c) triangular graphene. Insets show the graphene geometry and possible folding paths (black dashed 
line in insets)
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Figure S8. Normalized energy difference when the rectangular graphene is folded along its symmetric 
axis (green dotted line in insets) parallel to the length and width of the rectangle, respectively, where 

 ( ) is the aspect ratio of graphene.𝜂 = 𝑙/𝑤 ≥ 1
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Figure S9. Schematics to show the overlap length , self-folding line to determine the parameters in a 𝑙𝑜

“cone-like” folded triangular graphene. (a)The dashed green lines illustrate the self-folding line and the 
overlap length  is the distance of tip of graphene to the self-folding line. (b) The radius of arcs ( ) 𝑙𝑜 𝑟𝑎𝑟𝑐

centered at the intersection point between self-folding line and symmetric axis of triangle will increase. And 
the arc may have b.I) two intersection points with the bottom boundary of triangle, (b.II) two intersection 
points with the left and right boundary of triangle, respectively, and two intersection point with the bottom 
boundary of triangle and (b.III) one intersection point with the left and right boundary of triangle, 
respectively. Atoms on the same arc will be in the same cross-section of the “cone-like” pattern and the 
averaged radius of curvature at this cross-section is .𝑟𝑎𝑟𝑐/6


