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S1. Evaporation-driven self-folding of a single suspended graphene sheet

S 1.1 Rectangular/Square graphene

For a rectangular/square graphene (Fig. S1a), the folding line could be the symmetric axis of
the rectangle/square (Fig.S1), or the diagonal of the square (Fig.S2a), and either of them will
form an axial symmetric folding. In addition, the square graphene could be folded in central

symmetric pattern (Fig.S2b).

S 1.1.1 Folding along the symmetric axis

Fig.Sla shows a planar rectangular graphene with length ! and width W. Assume the

deformation is unidirectional along its long symmetric axis. Given a bending angle Oy after

deformation (Fig.S1b), the bending radius is

l
ry=—
20, S L1)

The coordinate of the point marked by green is (0, = W/2,0) and the coordinate of the point

marked by yellow is (d,0,h), where d=r7,sin b, and h=r,(1- Cosgb). Based on the full
contact assumption between solid and liquid, these two points should be also on the surface

of liquid. Then the profile of liquid can be estimated via
Wwith (0, - w/2,0) and (d'O’h), one can have

c = (d* + h* -w?/4)/2h (S 1.3)

and

Te=w'/4+c? (S 1.4)

Due to the minimization of the system energy and the surface energy of liquid, the overall
configuration of the liquid surface may not be a sphere. Only the molecules in the ¥ = Z and
Y = Z planes satisfy Eq. (S1.2). In order to get the overall profile of liquid surface, the total

height of graphene and liquid along the Y axis needs to be determined and it is

_ (2 .2 _
hlg_\/rC7y+C,yE[ w/2,w/2] (S 1.5)
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h hy=hy, - h,

Take the height of graphene ''g — h, independent of ¥, the height of liquid is

(Figs. Slc-e). Assume the profile of liquid is an arc, it can be determined by the points
(O,y h lg), (dy,h) and (- d.y,h), and could be represented by the radius of curvature, "ly and

half central angle of the profile of liquid, Hly (Figs. Slc-e). With these analyses, the profile of

liquid can be determined in each plane parallel to the * =2 plane in the range of
-w/2 <y <W/2 So the surface area of liquid exposed to the vacuum is

w/,

0 (S 1.6)

where ACGP - e(rc -w/ 2)2nrcap(rc -w/ 2) is the surface area of the spherical cap of liquid

at Iyl >w/2, S(TC -w/ 2) is the Heaviside step function and

—_ (2 2
Teap = (rb +(re-w/2) )/ 2(rc-w/2) is the bottom radius of the spherical cap. Similarly,
the volume of liquid can be obtained via
w/
V,= Z(Jz[rli(Hly ~ siny,cos0,,) + ri(@b ~ sind,cos0,)ldy +V .,
0 (S 1.7)

_ 2

where Veap = &(re—w/2)n(r-w/2) (rcap - (r-w/2)/3) is the volume of the spherical

cap of the liquid.

It needs to be mentioned that the expression of A and V1 are derived based on the

pvl TgW/Z >h plvl 7gW/2 <h

condition , and when , the point (0,-w/2,0) and (d,0,h) are no

longer on the surface of same sphere, a new point (d, = W/2,h) will replace (d,0,h) to generate

— 2 —
=1} V=0

anew 'candC, respectively. The spherical cap will also diminish and Acap

The surface area and volume of liquid can still be calculated based on Egs. (S 1.6) and (S 1.7).

Once A is obtained, the total energy can be calculated via Eq. (2) in the main text.

Further, if the deformation is along its short symmetric axis, the total energy can also be

calculated by swapping ! and W in the related equations.
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S 1.1.2 Folding along the diagonal axis

As shown in Fig. S2a, when the folding line is the diagonal of the square, given a bending angle

eb, the bending radius is

J2

"= 20,
b (S 1.8)

The coordinate of the tip of deformed graphene is (d,0,h), where d =7,sin (gb) and

2

h=r,(1-cosb,) (0’ - _l’O)
~ b b). Plug in (d,0,h) and 2 into Eq. (S 1.2), one will have

d*+ h*-12/2
cC=—
2h (S 1.9)
and
l2
re= |=+c?
2 (S 1.10)

After the geometric relationship between solid and liquid are determined, the total energy

during folding can be calculated by following S1.2.1 and is shown in Fig. S7a.

S 1.1.3 Folding along the central symmetric axis

As shown in Fig. S2b, when the folding occurs along the central symmetric pattern with four

folding lines, given a bending angle Hb, the bending radius is

T' =
40, S L11)

d=r,sin (a+6,)

The tip coordinate of deformed graphene is (d,0,h), where and

is the angle formed between the Z axis and

the line connecting the bending center and middle point of the folding line of graphene. Plug

V2 2

in (d,0,h) and ( 47 47 ) into Eq. (S 1.2), one will have
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_dP+RP-TP/4

C
2h (S 1.12)
and
lZ
re= —+c?
4 (S 1.13)

After the geometric relationship between solid and liquid are determined, the total energy

during folding can be calculated by following S 1.3.2 and is shown in Fig. S7a.

S1.2 Circular graphene
For a circular graphene, the folding may along the axis of symmetry of the circle (Fig. S3).
These will form an axial symmetric folding. It could also be folded in the central symmetry

pattern with three folding lines (Fig. S4a) or four folding lines (Fig. S4b).

S 1.2.1 Folding along the symmetric diameter axis

Fig.S3a shows a planar circular graphene with length [. Assume the deformation is

unidirectional along its symmetric axis. Given a bending angle Oy after deformation (Fig.S3b),

the bending radius is

l

Y, = ——
b7 20,

(S 1.14)
The coordinate of the point marked by green is (0, ~ /2 0 ) and the coordinate of the tip of

d =r,sin (6,,)

folded graphene (marked by yellow) is (d,0,h),  where and

h= Tb(l - cos (Hb)). Based on the full contact assumption between solid and liquid, these two
points should be also on the surface of liquid. Then plug in (d,0,h) and (0, = 1/2,0) into Eq. (S
1.2), one can get

AP+ R =174

- 2n (S 1.15)

Cc

and
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l2
rC: _+C2
4 (S 1.16)

Due to the minimization of the system energy and the surface energy of liquid, the overall
configuration of the liquid surface may not be a sphere. Only the molecules in the X = Z and
Y = Z plane satisfy Eq. (S1.2). In order to get the overall profile of liquid surface, the total

height of graphene and liquid along the direction of ¥ axis needs to be determined and it is

hyy=re-y" +cy€e[-1/21/2] S 117)
The bending angle of graphene at the plane parallel to the ¥ ~ Z plane is

/12/4_},2

by —
Tb (S 1.18)
And the height of graphene is
hy=1,(1-cosb),)) (S 1.19)
The height of liquid is hy = hlg B hg, and the distance of tip of graphene to the ¥ — Z plane is

dg=7,sin by, (S 1.20)
Assume the profile of liquid is also an arc, it can be determined by the points (0y ’hlg),
(dg’y ’hg) and ( - dg’y ’hg), and could be represented by the radius of curvature, Tl)/, and half

central angle of the arc, gly (Figs. S3c-e). With these analysis, the profile of liquid can be

determined in each plane parallel to the ¥ = Z plane in the range of — /2=y <1/2 The
surface area of liquid exposed to the vacuum is

l

0 (S 1.21)

l
Acap = e(rc - E)ancap(rc -1/2)

where is the surface area of spherical cap of the liquid

_ [2_ ;2
surface when Y| > 1/2, &(re=1/2) is the Heaviside step function and Teap = m te

is the bottom radius of the spherical cap. Similarly, the volume of liquid can be obtained via

l
Vv, = Z(Jz [rli,(ely - sinelycosé?ly) + r,z,(eby - sinebycoseby)]dy + Vcap)
0 (S 1.22)
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_ 2
where Veap = &(re=1l/2)n(r.-1/2) (rcap - (re=U/2)/ 3) is the volume of spherical cap of

the liquid.

Once 4 is obtained, the total energy can be calculated by following the type of Eq. (2)

in the main text.

S 1.2.2 Central symmetric folding with three folding lines

When the circular graphene folds in the central symmetric pattern with three folding lines, as

illustrated in Fig. S4a, given a bending angle Hb, the bending radius is

l

T, =—
40, (S 1.23)

d=rysin (a+6,)

The coordinate of the tip of deformed graphene is (d,0,h), where and

is the angle formed between the Z axis and the

line connecting the bending center and middle point of the folding axis of graphene. Plug in

13

, l,o)
(d,0,h) and (4 4 into Eq. (S1.2), one will have

_dP+RP-TP/4
2h (S 1.24)

lZ
r.= |—+c*
4 (S 1.25)

After the geometric relationship between solid and liquid are determined, the total energy

c

and

during folding can be calculated by following S1.3.2 and is shown in Fig. S7b.

S 1.2.3 Central symmetric folding with four folding lines

When the circular graphene folds in the central symmetric pattern with four folding lines, as

illustrated in Fig. S4b, given a bending angle ab, the bending radius can be determined, which

1S
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L _@-y2)

b
40, (S 1.26)

d=rsin (a+6,) and

The coordinate of tip of the deformed graphene is (d,0,h), where
=

..... = asin [——=0,

2-~/2"") is the angle formed between the Z axis

and the line connecting the bending center and middle point of the folding axis of graphene.

13

-1, - —l,O)
Plug in (d,0,h) and (4 4 into Eq. (S 1.2), one will have

d*+ h*-17/4
cC=—
2h (S 1.27)
and
l2
re= |—+c?
4 (S 1.28)

After the geometric relationship between solid and liquid are determined, the total energy

during folding can be calculated by following S1.3.2 and is shown in Fig. S7b.

S1.3 Triangular graphene
For a triangular graphene, the folding line could be the axis of symmetry of the triangle (Fig.
S5). This will form axial symmetric folding. It could also be folded in the central symmetric

pattern with three folding lines (Fig. S6).

S 1.3.1 Axial symmetric folding

Fig.S5 shows a planar triangular graphene with an equilateral edge length [, given a bending

angle eb, the bending radius is

!
"= 28,
b (S 1.29)

The coordinate of the tip of deformed graphene is (d.0,h), where d =rsin (6, and

3

_ . 0°5-10)
h=7y(1-cosi(0})) pryg in (d,0.h) and ( 2" into Eq. (S 1.2), one will have
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_d*+h*-31%/4
2h (S 1.30)

32
re= |—+c
4 (S 1.31)

After the geometric relationship between solid and liquid are determined, the total energy

c

and

during folding can be calculated by following S1.2.1 and is shown in Fig. S7c.

S 1.3.2 Central symmetric folding

Fig. S6a shows a planar triangular graphene with length [. Assume the deformation is in the

central symmetric pattern with three folding lines. Given a bending angle Oy after

deformation, the bending radius is

(S 1.32)

3

Mz

1
z,o)
The coordinate of the point marked by green is (12 4 and coordinate of tip of the

d=r,sin (a+6,)

deformed graphene is (d,0,h) (marked by yellow), where and

is the angle formed between the Z axis and
the line connecting the bending center and middle point of the folding line of graphene (when

a+0,= T and it could be derived that the maximum

3 1
\Fl -0

P ll )
value of Oy is 0.72m). Plug in (d,0,h) and (12 4" Jinto Eq. (S 1.2), one will have

the graphene is folded into a closed form,

_d*+h*-1P/12
2h (S 1.33)

c

and

— [12 2
r.=.\/l°/12 +c (S 1.34)

Due to the minimization of the system energy and the surface energy of liquid, the overall

configuration of the liquid surface may not be a sphere and needs to be analyzed along the Z
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axis. Consider the geometry of triangle, the total angle formed by graphene
(Figs.Sé6c-e) is
0,,=0,+06,,=m/3

the radius of curvature of liquid in the plane parallel to the X =Y plane is

r,= /r? -(z- c)z, z€[0,r,+c]

and the width of deformed graphene is

VA
cosa — —
Ty

2
W, == gﬁrb[acos —a|+1/2

Thus, the angle formed by graphene is

w
) gz
ng = asin |—
ZrIZ

The surface area of liquid can be determined via

A= S]ZHIZrlzdz + Acgy
0

A, =2

and liquid

(S 1.35)

(S 1.36)

(S 1.37)

(S 1.38)

(S 1.39)

where ““cap nrcap(rc +c-h) is the surface area of the spherical cap of liquid and

Teap = T2 (h=0)°. . . -
cap ¢ is the bottom radius of the spherical cap. Similarly, the volume of

liquid can be obtained via
V,= 3].(Wgzrlzcosegz/2 + lerlzz)dz *+Veap
0

where Veap = n(r,+c- h)z(rcap -(ro+c- h)/3)

liquid.

(S 1.40)

is the volume of spherical cap of the

After 4 is calculated, the total energy can be obtained by following the type of Eq. (2)

in the main text.
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S2. Determination of elastocapillary length
S2.1 Rectangular graphene
Eq. (2) in the main text gives the total energy during folding

2B6?2
E. = T + Ay, + lwy  + lwy;

(S 2.1)

E

— 2 I _
where Eger = 2B0},/n is the deformation energy, =~ surf — g is the surface energy of liquid,

g — —
Esury = twys is the surface energy of solid and Einter = twy is the interfacial energy between

solid and liquid. To determine the elastocapillary length, assume the solid has been folded to a

0, + A0, =m,A0, > 0 and AG,—0

whole circle very closely ( ), the surface area of liquid can

be estimated by

A= ZH(L)Z + (ZN(L) - l)w
20, 26, (S 22)

AE,=AE,=0

Suppose there is no detaching happens, =9 , and the energy competition only

l
AE def and AE

involves surf, Consider a critical condition,

_ l
AEdef - |AEsurf (S 2.3)

which yields
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2Bm? 2B(m - 16,)°

Zn(z(n-—lmb))z - 277(%)2 + (Zﬂ(Z(n——lAHb)) - l)w - (Zn(%) - l)w

(S 2.4)

n n

=y,

left side of Eq. (S 2.4) leads to
oBr? 2B(m-A6,)* 2B
w_2B(-46) =2(2n06, - A62)
Y] U] Y] (S 2.5)

and right side of Eq. (S 2.4) leads to

Zn(my - Zn(%r)z + (271(@) - l)w - (Zn(%t) - l)w

(2mn + 2n2)A9b ~ (21 + ) A6}

14

= yllz

27 (m - AHb)z

(S 2.6)
Let
(2mn + 21%)A8, - (21 + 1) A6}

%(zmeb - 06}) =y I’

2mn(m - A6,)?

3 2 2 A6°
B 2nn(8rm” - 10m°A6 + 4wAO” — —
>l= |— 2

N2
- 21AG - nA@ + 4mn + 4n S 2.7)

47 |B
lec = .
R (S 2.8)

As has been proved in S1.2 (Fig. S7b), the axial symmetric folding pertains the lowest energy

Plug in A0, = 0, we can get

S2.2 Circular graphene

when the volume of water is small enough and the elastocapillary length will be derived based

on the axial symmetry folding pattern. Given the bending stiffness of graphene B=2.31

x 107" 71 and the surface tension of water ¥1=0.0613 J/ mzz’ by varying the length of the

9
graphene, the critical length lec can be obtained via
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AEdef

0b=n:1

l
AE surf

(S 2.9
9 — —19/ |

lec = 1227 \m and the geometric factor can be calculated via s =lg/\B/ i This geometric

factor is a constant for a circular graphene and is independent of the dimension of liquid and

graphene. Therefore, the elastocapillary length is
B
l,, =632 |—
Vi (S 2.10)

S2.3 Triangular graphene
As has been proved in S1.3 (Fig. S7c), the central symmetric folding always pertains the lowest

energy and the elastocapillary length will be derived based on the central symmetric folding

pattern. Given the bending stiffness of graphene B=2.31 X 10 1 J! and the surface tension of

water V1=0.0613 J/ mzz, by varying the length of the graphene, the critical length can be

obtained via

AE 4

- =1
6,=072n

l
AE surf

(S2.11)
g — —197/ |

lee =670 1 and the geometric factor can be calculated via $ = N Y1, This geometric

factor is a constant for a triangular graphene and is independent of the dimension of liquid and

graphene. Therefore, the elastocapillary length is

B
I, =345 |—
Vi (S 2.12)

Note that in comparison with rectangular graphene, the geometric factors in Egs. (S 2.10) and
(S 2.12) are given as a specific value for both circular and triangular graphene because the
explicit geometric relationship at their critical folding condition cannot be formulated and

numerical iterative approaches were used to solve Egs. (S 2.9) and (S 2.11).
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S3. Determination of wet-capillary length when considering surface wettability of solid
S 3.1 Rectangular and Circular graphene

Based on Eq. (7) in the main manuscript, define

O
Va=——5 + ¥i(1 4+ cosb,)
21 (S 3.1)
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Ya=0 yields

L= 6 ] .
< [2y,(1 4+ cosb ) S 32)

Hr/ ¢ . . . 07‘/ =1
where “ b is the ultimate bending angle for rectangular and circular graphene, and ~ b.c ,

and thus we have

B
L. .=m
we 2y,(1 + cosb ) S 33)
S 3.2 Triangular graphene

Based on the geometric analysis, replace ! by \BU/4 in Eq. (S 3.1), we can get

8BO;
Yg=- +v,(1 + cosb,)
31° (S 3.4)
Ya=0 yields
8B
L= e [37,(1 + cosd
Vl( cos c) (S 3.5)

0,.=0.72m

¢
where O is the ultimate bending angle for triangle and , and thus we have

L B
we \/§ Zyl(l + COS@C) (S 3.6)
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S4. Energy competition at the vdW energy-driven self-folding
S 4.1 Rectangular graphene

When the graphene is self-folded into a “racket-like” pattern, the total energy is

Bl,w
E,,= Py + vl w + v (2lw - 21 w)

b (S 4.1)

Further, consider

11,
T Tw
(S 4.2)

the total energy becomes a function of overlapping length, which is

2% Bw
E,, = CTR +yl,w+yw(2l-21)
<l (S 4.3)
And the energy ratio is
AE _ 42 1
A(EvdW + Esiiqrf) (Vb - Zys)[(l - 210) [L- 2(lo + Alo)]] (S 4.4)
Let l,=0
AE def _ 41°B
B 2
A(EvdW + Esusrf) vy - 2)/5)(1 - ZlAlo) (S 4.5)
When Al, = 0, the critical length can be obtained, and it is
B
l =2n |;7—(——
" vy =27 (S 4.6)
S 4.2 Circular graphene
The total energy during self-folding of a circular shaped graphene is
BA,
Etot = ? + ybAo + VS(ZA - 2A0)
b (S 4.7)

where Ay is the area of deformed part, 4y is the area of overlapped part and 2A-24, is the

area exposing to the air/vacuum. Define h=rg- lO, where "'s is the radius of graphene and Ly

acos (h/r,)

is the overlap length, one can find a= , and
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r.—1

A, = acos ( Sr O)ri - (rs - lo) [2rl, - l(Z)

s (S 4.8)
and
r.—1
Ab=nr§—2acos( ° O)ri—Z(rs—lo) /2rslo—l§
T (S 4.9)
So
r.—1
2|2 s ‘ol o 2
Bm an—Zacos( m )rs +2(ry-1,) /2rslo—10]
Edef =
2
2(r-1,) (S 4.10)
E .=V [acos (TS_ lo)rz (ro—1,)./2r 12]
vdW — ''b s Us %o sto " to
s (S 4.11)
and
r.—1
Esa"rf =Y, Zm”? - 2acos( > O)rﬁ +2(rg-1,) 2, - li]
Ts (S 4.12)

the total energy is
E

tot
r.—1

mr? - 2acos ( Sr O)r? +2(rg- 1) J2rd, - 12
N

Z(r_lo)z ’

r? + Z(rs - lo) [2rJd, - lﬁ]

Br?

Ts— lo 2
acos re—(r,
r

N

Ts

+ Y

- lo
Ts

ani — 2acos (

(S4.13)
Energy competition can be calculated based on Eq. (12) in the main manuscript and the critical

length for self-folding can be evaluated by

—o=1

l
AE g+ AE | ° (S 4.14)

Given the bending stiffness of graphene B=2.31 X 10~ P and the surface energy density of
_ 2

graphene ¥Ys=0.047]/ m*2 and the binding energy density of graphene vy ==0.232]/m 2, by

varying the length of the graphene, the critical length can be obtained by solving Eq. (S 4.14)
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19 =9.87

and we get nm and the geometric factor can be obtained via

—197/ | —
ke=15/B/ |yb 2Ys |=11.72. This geometric factor is a constant for the “racket-like” pattern

of the circular graphene and is independent of the dimension of graphene. Therefore, the critical

self-folding length is

B
I, =1172

vy =2l (S 4.15)

S 4.3 Triangular graphene

After the first stage of evaporation, one of the tips of triangle unfolds into a flat pattern while

the other two tips keep folding and finally a “Cone-like” pattern will be obtained (Fig.1c). This

is a three-dimensional pattern and the geometric feature of this pattern needs to be discussed.
As shown in Fig. S9a, suppose the two lower tips of the triangle will be folded while the

top tip of the triangle will not. Further, suppose the folding line of the left lower tip is parallel

to the right boundary of triangle and the folding line of the right lower tip is parallel to the left
boundary of triangle. The overlap length Ly is defined as the distance of the tip of triangle to
the folding line. So, if Lo increase, the folding line will propagate inside the triangle. The
absolute values of slope of the folding lines are the same and is k=13 for the right bundles

and k =— \B for the left bundles.

Consider the symmetry of the folding lines, we will analyze the right bundles. For a given

length ! and the overlap length lO, the function of folding line is
3
y =A/3x - £l +21,
2 (S 4.16)

The coordinate of the interception points between the folding line and the axis of symmetry of

the triangle is

(o, - \—Bz + 210),(0 <l < Ez)
2 4 (S 4.17)

and the coordinate of the interception points between the folding line and bottom boundary of
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triangle is

(S 4.18)

NE

0,- 0+ 21,

Further, suppose an arc centered at ( ) with a radius of "arc, if the arc has an

interception point with the triangle, the radius should satisfy

3
£l—210_ Tore SABL-21,
2 (S 4.19)

And the equation of arc satifies

arc

\El—Zl)

2
X"+ |y +
b+

3
(\zfz-zzo_ m_\ﬂ-zz)

(S 4.20)

During the self-folding of “Cone-like” pattern, averaged radius of curvature of the atoms on

the same arc is a function of raTC, which is discussed below.
The intersection point between the arc and the right boundary of triangle can be determined

by

3 l
y=—ﬁx+§l,(0£xsz)
3 3
X +(y+£l—21) arc,(\fl—ZZOSrarc_\fl—Zl)

(S 4.21)

and the intersection point between the arc and the bottom boundary of triangle can be

determined by

l
=0,|10<x<-—
Y ( g 2)

3 3
(y+\7fl—21) aic,(\gz-mogm_\ﬂ-zz)

(S 4.22)
After we get the intersection points, we may have three conditions:
1)) The arc only has two symmetric intersection points with the bottom boundary of
triangle (Fig. S9b(I)), and in this case, the length of arc is
larc =2r T arc%p (S 4_23)
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where

Xp
a, = arcsin [—

rarc

(S 4.24)

*b is the X coordinate of the intersection point. Further, the length of the central part of the

arc is
s
lmcﬂc = §rarc'(larc > laf’c) (S 4.25)
Therefore, the average radius of curvature of the folded triangle is
laic
Tave = 2_
n (S 4.26)

(I)  The arc has two intersection points with the left and right boundary of triangle
respectively and two symmetric intersection points with the bottom boundary of

triangle (Fig. S9b(Il)), and in this case, the length of arc is
larc = Zrarc(arl ta,-a, (S 4.27)

where

. Xl . X . Xpr
arl = arcsin r— ,Clb = arcsin | —— ,(er = arcsin T'_
arc, arc, (S 4‘28)

arc

and the length of the central part of the arc is

s
lmcﬂc = §rarc'(larc > laf’c) (S 4.29)
Therefore, the averaged radius of curvature of the folded triangle is
laic
Tave = 2_
n (S 4.30)

(III)  The arc only has one intersection point with the left and right boundary of triangle

respectively (Fig. S9¢(Ill)), and in this case, the length of arc is
larc = zrarcar (S 4_3])

where

xr
a,.= arcsin

rarc

(S 4.32)
20/31



And the length of the central part of the arc is

s
la?c = §rarc'(larc < laf’c) (S 4.33)
Therefore, the average radius of curvature of the folded triangle is
l(l:'C
Tave = 2_
s (S 4.34)

After the length of arc and average radius of curvature are determined, the energy of the folded
“Cone-like” pattern can be calculated. Given the equilibrium distance ¢ between the overlapped

part of graphene, the deformation energy is

\BL-21,
Bm Te
Edef_T In - ar ..
ﬁ i
-2
2 ° (S 4.35)
where
lyre = TtN*
r=——
2N (S 4.36)
and
r,=r;+ Nt (S 4.37)
N'=Lore/ 27T gpe is the number of folded rings.
The binding energy is
30~ 21
- 21 .- (2nr; + mt?) - (ane - ntz)
EvdW =Y 2 dT‘arC
NG
-2
2 ° (S 4.38)
and the surface energy is
\BlL-21,
Esugrf = 27'[]/5 f (ri + Te )drarc
N:
—1-21
2 ° (S 4.39)

Energy competition can be calculated with Eq. (12) in the main manuscript and the critical
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length for self-folding can be evaluated by

1 =0=1
[0

s
AEsurf + AEvdW (S 4.40)

-19
Given the bending stiffness of graphene B=2.31X 10" "] 1 the surface energy density of

— 2
graphene ¥Ys=0.047]/ m*2 and the binding energy density of graphene vp==0.232]/m 2, by

varying the length of the graphene, the critical length can be obtained by solving Eq. (S 4.40)

19 =11.42

and we get nm and the geometric factor can be obtained via

—197/ | —
ke=15/B/ h/b 2)/5|=13.57. This geometric factor is a constant for the “cone-like” pattern of

the triangular graphene and is independent of the dimension of graphene. Therefore, the critical

self-folding length is

B
I, =1357

vy =27 (S 4.41)
Similar to the determination of elastocapillary length in section 2.2 and section 2.3, the
geometric factors in Egs. (S4.15) and (S4.41) are given with a specific value for both circular
and triangular graphene because the explicit geometric relationship at their critical folding

condition cannot be formulated and numerical iterative approaches were used to solve Egs. (S

4.14) and (S 4.40).

Reference:
1. Y. Wei, B. Wang, J. Wu, R. Yang and M. L. Dunn, Nano letters, 2013, 13, 26-30.
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Figure S1. Evaporation-driven self-folding of a single suspended rectangular graphene sheet.

Schematics of (a) planar rectangular graphene, and (b) suspended in liquid. (¢) The variation of profile of
graphene and liquid along the ¥ direction at (c) ¥ =0, (d) ¥ =W/4 and (e) ¥ = W/2.
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Figure S2. Schematic figures of the square graphene folded in different patterns. (a) Schematics of
planar square graphene, and after suspended in liquid. (b) Schematics of planar square graphene, and after
suspended in liquid. The green dotted line shows the folding line of the graphene.
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Figure S3. Evaporation-driven self-folding of a single suspended circular graphene sheet. Schematics
of (a) planar circular graphene, and (b) suspended in liquid. (c) The variation of profile of graphene and
liquid along the ¥ direction at (¢) ¥ =0, (d) ¥ = /4 and (e) ¥y = l/2.
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Figure S4. Schematic figures of the circular graphene folded in different patterns. (a) Schematics of
planar circular graphene, and after suspended in liquid. (b) Schematics of planar circular graphene, and after
suspended in liquid. The green dotted line shows the folding line of the graphene.
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folding line

Figure S5. Schematics of planar triangular graphene, and after suspended in liquid. The green dotted
line shows the folding line of the graphene.
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Figure S6. Evaporation-driven self-folding of a single suspended triangular graphene sheet.
Schematics of (a) planar triangular graphene, and (b) suspended in liquid. (c¢) The variation of profile of
graphene and liquid along the Z direction at (¢) 2 =0, (d) Z = h/2 and (e) 2= h.
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Figure S7. The energy variation with water volume for self-folding (a) square graphene (b) circular graphene
and (c) triangular graphene. Insets show the graphene geometry and possible folding paths (black dashed

line in insets)
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Figure S8. Normalized energy difference when the rectangular graphene is folded along its symmetric
axis (green dotted line in insets) parallel to the length and width of the rectangle, respectively, where
n=1/w (21) s the aspect ratio of graphene.
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Figure S9. Schematics to show the overlap length lO, self-folding line to determine the parameters in a
“cone-like” folded triangular graphene. (a)The dashed green lines illustrate the self-folding line and the
overlap length Lo is the distance of tip of graphene to the self-folding line. (b) The radius of arcs ("are)
centered at the intersection point between self-folding line and symmetric axis of triangle will increase. And
the arc may have b.I) two intersection points with the bottom boundary of triangle, (b.I) two intersection
points with the left and right boundary of triangle, respectively, and two intersection point with the bottom
boundary of triangle and (b.III) one intersection point with the left and right boundary of triangle,

respectively. Atoms on the same arc will be in the same cross-section of the “cone-like” pattern and the

averaged radius of curvature at this cross-section is Tarc/©,
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