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1. Preparation of PAA Working Solution 

 
TABLE S1 Amount of acrylamide and bis-acrylamide used for 10 ml of PAA working solution for the 
substrate stiffnesses used. The remaining volume is 1X PBS. The elastic modulus was determined by 
rheology. 

Elastic Modulus (kPa) 40 % Acrylamide (mL) 2 % Bis-Acrylamide (mL) 

19.4 ± 0.5 2 0.7 

29.3 ± 0.5 2.5 0.75 

41.2 ± 0.9 2.5 1.3 

54.1 ± 0.7 2.5 2.25 

83.1 ± 0.3 3.75 1.5 
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2. Data Analysis 
Our aim is to determine the temporal evolution of traction forces from a 30-min-recording of 

fluorescent beads. We require the algorithm to fulfill a number of criteria. First, it shall be 

applicable to small cells. Thus, a high resolution in space is needed. Second, it shall be 

suitable for cells that exert high forces within short time intervals. While this is already taken 

into account during imaging by choosing a small temporal resolution Δt, the analysis algorithm 

must also account for this aspect. Lastly, given the high bead density and large number of 

frames to be compared to each other, an automated algorithm is necessary. In the following 

we describe two variants of our method that fulfil these criteria, an algorithm that is based on 

PIV and data smoothing (smoothing-based approach) (Fig. S1A), and one that is based on 

optical flow and regularization (regularization-based approach) (Fig. S1B).  

 

2.1 Smoothing-Based Approach 
PIV analysis is performed using MATLAB (MATLAB R2009b, The Mathworks, Natick, MA, 

USA). First, due to the relatively low signal-to-noise (SNR) in the images, we increase the 

contrast between beads and background (Fig. S1A, step 1). To this end, non-linear signal 

enhancement is applied. This amplification scales the intensities onto the interval [0,1] such 

that the smallest intensity is mapped to 0 and the highest intensity to 1. We then define a new 

intensity distribution such that s → sp for s ∈ [0,1] is the scaled intensity and p > 1. The choice 

of p depends on the noise in the images; for higher noise, a higher value for p is used. For the 

data presented here, p is chosen between 1.7 and 2.8. For additional denoising, a Wiener filter 

of size 3 x 3 pixels is applied. The image smoothing is followed by drift correction to account 

for small shifts in the field of view (FOV). This is achieved by cross-correlation in Fourier space 

as described in Ref. (1) (Fig. S1A, step 2).  

In general, traction forces are calculated using the integral equation (2,3)  

dj(x̄) = ∫A∑lGjl(x̄ − x̄
')fl(x̄

')dx̄' (1) 

where f̄(x̄) denotes the two-dimensional traction force field, d̄(x̄) the displacement field 

measured by following the beads, A the area on which the forces are studied, and Gjl(x̄) the 

Boussinesq Green’s function (3). Thus, for determination of the traction forces, we first need 

to determine the displacement vectors relative to the null image. Given the aforementioned 

fast force dynamics on a small area at high bead density, direct bead tracking is difficult when 

working with platelets. At the same time, however, the highly dynamic bead patterns result in 

so-called loss of pairs common for PIV techniques. Thus, Eq. 1 is solved in three steps (see 

Fig. S2). First, the velocity field is calculated by PIV (Fig. S1A, step 3) using the MATLAB 

toolbox mPIV (http://www.oceanwave.jp/software/mpiv). The statistical mean velocity inside a 

small interrogation sub-window at a certain time point ti is estimated by calculating the cross-

correlation inside the sub-window between the present frame and a reference frame (Fig. 

S2A). To gain reliable velocities at this stage, the changes in bead pattern between the two 

images we compare must be sufficiently small in order to reduce bead loss within the single 

interrogation windows. For cells, which exert large forces, we compare two consecutive 

images, rather than the present image and the very first one, thereby anticipating large 

displacements within short time intervals. Additionally, this approach allows for arbitrarily long 

recording times given a sufficiently small Δt. This marks the strength of the algorithm presented 

here compared to other tTFM analysis algorithms (3–5) since the algorithm is adaptable for 

various cell sizes, force dynamics and observation times. 
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FIGURE S1 Work flow in the algorithms for traction force computation. (A) Smoothing-based 

approach and (B) regularization-based approach. The colored boxes on the left-hand side in each panel 

show the individual steps in the algorithm. The colors describe the classification of each step: image 

pre-processing (red: (A), step 1 and 2), main calculation (blue: (A), step 3 to 5 and (B), step 1 to 5) and 

post-processing (green: step 6). On the right-hand side of each panel, the results for each intermediate 

step are given. The bottom image shows an example of the traction force magnitude distribution for a 

given time point together with the corresponding cell outline in white. Scale bar: 5 µm. 

 

The contraction movie of the bead pattern below and near a single cell is first divided into sub-

windows in a coarser grid (5.9 or 9.2 µm² per sub-window depending on the contraction 

speed), with a 50 % overlap of the individual windows in each direction. In a following recursion 

step, the edge length of the sub-windows is reduced by a factor of 2 for the final, finer grid. 

The velocity fields determined on the coarser grid serve as a guide to determine the velocity 

field of the finer grid. In our experience, this approach yields a higher accuracy than starting 

directly with a fine grid. By applying a median filter to the velocity field, erratic velocity vectors 

are removed.  
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FIGURE S2 Schematic of the evaluation steps 3 and 4 shown in Fig. S1A.  (A) Detailed description 

of step 3. The bead image is divided into sub-windows (orange, step 1). Note that the overlap between 

sub-windows is not shown here for simplicity. For a given sub-window, we study the bead pattern at two 

subsequent time points (step 2). Note that all beads have moved differently but none left the window. 

By cross-correlation, we calculate the statistical mean velocity between the two windows (violet arrow, 

step 3). (B) Detailed description of step 4 in Fig. S1A. For each time point, we study the velocity field 

for the given grid (step 1). Defining a new evaluation window by disregarding sub-windows at the border, 

we distribute Lagrangian markers regularly on a 2x2 pixel grid inside the window (magenta, step 2). We 

locally approximate the continuous velocity field using periodic cubic splines (step 3) and recursively 

calculate the displacement for each marker (step 4).  

 

It can be shown that statistical errors arising during the calculations are reduced by always 

comparing frames 𝑡𝑖 and 𝑡𝑖+1 both forward and backwards and averaging the results to obtain 

the final velocity field. All sub-windows containing no velocity vectors are assigned a velocity 

by interpolating the neighboring vectors. The advantage of using PIV in combination with 

interpolation compared to direct bead tracking becomes particularly obvious when bead 

clusters are present. For small clusters, the sub-windows can still be analyzed while the 

velocity of slightly larger clusters can be determined by local Kriging interpolation. This 

approach yields a spatial resolution of 600 nm, given the distance of mid-points between 

neighboring sub-windows, similar to the definition of resolution used in Ref. (3). 

We have now determined an instantaneous velocity field v̄(𝑡𝑖, �̅�𝑘), where �̅�𝑘 is the position of 

the mid-point of the interrogation window k and 𝑡𝑖 is the current time point. To determine the 

traction forces relative to a relaxed state, we need to calculate the displacement fields relative 

to t0 such that the displacement �̅� at time point t is given as  

d̄(t) = x̄(t) − x̄(t0) (2) 
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Mathematically, we need to solve the ordinary differential equation  

ẋ̄ = v̄(𝑡, x̄) (3) 

with the given initial position x̄(t0). Thus, we solve Eq. 3 numerically by the symplectic implicit 

midpoint method such that  

x̄(ti+1) − x̄(ti) = Δt ⋅ v̄ (𝑡𝑖 +
∆𝑡

2
,
�̅�(𝑡𝑖) + �̅�(𝑡𝑖+1)

2
) 

(4) 

We proceed by selecting a finite set of uniformly distributed Lagrangian markers which are 

sufficiently densely packed inside the complete domain (Fig. S2B, step 2). These markers are 

defined by their individual starting position x̄(t0) without further physical properties. The 

concept is borrowed from fluid dynamics, where Lagrangian markers are the tracer particles 

studied in the Lagrangian description of a flow field (Fig. S1A, step 4). For simplicity and to 

avoid additional interpolation steps, the markers are placed on a rectangular grid which will 

later also be used to determine the local traction forces. The density of the Lagrangian markers 

influences the approximation quality of the FTTC result: the higher the number of markers the 

better the approximation. At the same time, the calculation time increases linearly with the 

number of markers. Here, we found that a 2 x 2 pixel grid for the markers is optimal for our 

purpose. 

As described above, the velocity field is determined by comparing two frames taken at 𝑡𝑖 and 

𝑡𝑖+1 and thus corresponds to the average velocity between the time points 𝑡𝑖 and 𝑡𝑖+1. A 

reasonable assumption is, therefore, that the beads are moving with exactly that velocity 

during the whole interval [𝑡𝑖  𝑡𝑖+1], and thus also at 𝑡 = 𝑡𝑖 +
∆𝑡

2
. The velocity field can be used 

immediately in Eq. 4  

For each velocity field v̄(𝑡𝑖, �̅�𝑘), the single velocity entries determined by PIV are assigned to 

the center of the corresponding interrogation window (Fig. S2B, step 1). As PIV may cause 

instabilities at the image edges, the interrogation windows near the edges are disregarded in 

the computations. Given the starting position of each marker, we can now solve Eq. 4 

recursively (Fig. S2B, step 4). The initial guess for the next marker position is provided by an 

Euler forward approach. To gain locally continuous velocity fields, the previously determined 

velocity fields are interpolated using periodic cubic splines. In contrast to conventional cubic 

splines, we periodically continue the velocity field by three sub-windows in each direction 

before locally approximating by a cubic spline. To avoid markers leaving the evaluation frame 

or giving rise to high disturbances at the edges due to remaining instabilities, we adopt 

homogeneous Dirichlet boundary conditions, v̄(𝑡𝑖, xedge, yedge) = 0. These boundary conditions 

can be justified by the assumption that the force field is of finite size and fully enclosed in the 

studied frame such that the gel is fixed at the boundaries.  

As we need to move our markers continuously over the whole studied area, we have to convert 

the velocity field, which is discrete in space, into a locally continuous field.  

After solving Eq. 4 for all time points 𝑡𝑖, the displacement field as defined in Eq. 2 is available 

and the traction forces can be calculated by solving Eq. 1. As this equation is a convolution of 

the Green’s function and the force field, it is often solved in Fourier space where it can be 

written as 

�̃�𝑗,�̅� = {∑ �̃�𝑗𝑙𝑓𝑙
𝑙

}
�̅�

 
(5) 

With the corresponding wave vector �̅�. Thus, we can now use the FTTC algorithm as described 

in Refs. (3,6) without additionally regularization as we can show that this step is not necessary 

in the present application (Fig. S1A, step 5).  

To be able to compare two cells with each other concerning the temporal evolution of their 

contractile behavior, we define the scalar quantity ‘total force’ as reported previously (5,7) as  
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Ftot = ∫AROI|T̄(x̄)|dA (6) 

where T̄(x̄) is the traction force and 𝐴𝑅𝑂𝐼 defines a rectangle around the cell large enough to 

enclose all force contributions stemming from the cell, but sufficiently small to exclude 

instabilities at the edge (Fig. S1A, step 6). We deliberately do not use the energy as a physical 

quantity for the comparison as the noise in our data introduces large errors in the energy 

calculation (see Fig. S3 and S4). 

 

2.2 Regularization-Based Approach 
Simultaneously, we evaluate our data with an algorithm based on optical flow and 

regularization (Fig. S1B). Previously, it was observed that optical flow yields higher forces and 

more precise results than PIV for large cells with small, defined focal adhesions (8). Here, we 

test if this also holds true for small cells where we cannot distinguish any defined focal 

adhesions in our data.  

For the following algorithm, the open source OpenCV is used (Open Source Computer Vision 

Library, https://github.com/itseez/opencv, 2015). To use the optical flow algorithm, we need to 

find features of interest to track. In our case, these features are the beads located in the gel. 

The beads in the images are characterized through changes in the intensity over neighboring 

pixels, which can be detected by using an appropriate edge detection algorithm. Here, we 

apply the Shi-Tomasi corner tracking algorithm (9,10) (Fig. S1B, step 1). To do so, the original 

16-bit recordings are truncated to 8-bit images. For each pixel (𝑥, 𝑦) in the image, a small 

surrounding window of size 𝑎 × 𝑏 is considered. Here, we use a square window such that a = 

b = 11 pixels. The change in intensity between the original window and the window moved by 

a translational vector (∆𝑥, ∆𝑦) is measured by the sum of squared differences (SSD)  

𝑆𝑆𝐷(𝑥, 𝑦) =  ∑(𝐼(𝑢 + ∆𝑥, 𝑣 + ∆𝑦) − 𝐼(𝑢, 𝑣))²

(𝑢,𝑣)

 (7) 

 

where 𝐼 is the intensity of a pixel and the sum is taken over all pixels (𝑢, 𝑣) belonging to the 

window. The intensity of the shifted sub-image 𝐼(𝑢 + ∆𝑥, 𝑣 + ∆𝑦), can be approximated by a 

Taylor expansion, reducing Eq. 7 to  

𝑆𝑆𝐷(𝑥, 𝑦) ≈  ∑ (
𝜕𝐼(𝑢, 𝑣)

𝜕𝑢
∆𝑥 +

𝜕𝐼(𝑢, 𝑣)

𝜕𝑣
∆𝑦)

2

(𝑢,𝑣)

 
(8) 

 

Introducing the structure tensor   

𝐴 = ∑

(

 
 (

𝜕𝐼(𝑢, 𝑣)

𝜕𝑢
)
2 𝜕𝐼(𝑢, 𝑣)

𝜕𝑢
∙
𝜕𝐼(𝑢, 𝑣)

𝜕𝑣

𝜕𝐼(𝑢, 𝑣)

𝜕𝑢
∙
𝜕𝐼(𝑢, 𝑣)

𝜕𝑣
(
𝜕𝐼(𝑢, 𝑣)

𝜕𝑣
)
2

)

 
 

(𝑢,𝑣)

, 

 

 

(9) 

 

Eq. 8 reduces to  

𝑆𝑆𝐷(𝑥, 𝑦) ≈ (∆𝑥 ∆𝑦)𝐴 (
∆𝑥
∆𝑦
) 

 (10) 

SSD describes the intensity changes within our window if it is moved into the direction (∆𝑥, ∆𝑦). 

A localized feature like a bead is characterized by large changes in all directions of movement. 

The degree of change is characterized by the eigenvalues 𝜆1 and 𝜆2 of 𝐴. So for each pixel 

(𝑥, 𝑦), the function 𝑅 = min (𝜆1(𝑥, 𝑦), 𝜆2(𝑥, 𝑦)) is considered. All pixels with a larger 𝑅 than a 

given threshold are counted as features. The threshold is set to be 𝑞 ∙ 𝑅𝑚𝑎𝑥, with 𝑅𝑚𝑎𝑥 =

max(𝑥,𝑦)𝑅(𝑥, 𝑦) and 𝑞 being a quality level. Thus, image noise is suppressed. Furthermore, to 

avoid multiple detection of larger beads or bead clusters, a minimum distance of 3 pixels 

between features is defined. Additionally, features with a 𝑅 less than 5-6% of 𝑅𝑚𝑎𝑥 are 
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discarded and no more than a total amount of 1000 features are considered. The remaining 

features are designed as the discrete bead positions to be tracked in the following images.  

Given the starting position of our beads, we determine their displacement by means of an 

optical flow algorithm. Here, we use the pyramidal Kanade-Lucas-Tomasi (KLT) algorithm 

(11,12) (Fig. S1B, step 2). Consider two consecutive frames taken at times 𝑡 and 𝑡 + ∆𝑡 and a 

bead located at position (𝑥, 𝑦). Then 𝐼(𝑥, 𝑦, 𝑡) = 𝐼(𝑥 + ∆𝑥, 𝑦 + ∆𝑦, 𝑡 + ∆𝑡), at least 

approximately, if the bead moves by (∆𝑥, ∆𝑦). In case of an infinitesimal time difference ∆𝑡 the 

limit ∆𝑡 → 0 yields the optical flow equation  

𝜕𝐼(𝑥, 𝑦)

𝜕𝑥
𝑣𝑥 +

𝜕𝐼(𝑥, 𝑦)

𝜕𝑦
𝑣𝑦 +

𝜕𝐼(𝑥, 𝑦)

𝜕𝑡
= 0 

(11) 

Here, �̅� = (𝑣𝑥, 𝑣𝑦) denotes the velocity of the bead's movement. Once �̅� has been determined, 

the displacement of the bead between the two frames can be estimated by �̅� = �̅�∆𝑡. Note that 

here we assume the velocity to be constant between two frames.  

Eq. 11 is not only underdetermined, but even subject to erroneous data. In order to get a more 

reliable estimate of the velocity, a window of size 𝑠 × 𝑠 around a bead is considered. The 

general idea of the Kanade-Lucas algorithm is that, similar to PIV, neighboring pixels have a 

similar motion. Thus, Eq. 11 is required to hold for all 𝑠2 pixels of the sub-frame. This provides 

us with 𝑠2 linear equations for the two scalar unknowns 𝑣𝑥 and 𝑣𝑦. This system is solved in a 

least-squares sense. The displacement is then calculated for increasingly smaller windows 

according to the pyramidal Kanade-Lucas-Tomasi algorithm, where the displacements in the 

larger windows are used as an off-set for the displacement of the smaller windows. Windows 

are divided into quarters until a given number of iterations is reached. Here, in the first run, we 

consider a window size of 64 pixels, in the second run, the window size is halved to 32 pixels. 

In a similar manner as with the previous algorithm, we track our beads between successive 

frames and move them linearly forward in time.  This is equivalent to solving Eq. 3 by the 

explicit Euler method. Also, as described above, to reduce statistical errors, we always 

compare the images both forward and backwards and average the results. The result of this 

step is a set of displacements over time. By choosing an image corner in which no 

displacement should be observed, we can determine the drift occurring during recording (Fig. 

S1B, step 3). Image drifts are removed by subtracting the mean displacement of a box of 50 

x 50 pixels in a cell-free region from all displacement vectors. This approach has the advantage 

over standard drift-correction techniques, such as the one provided by ImageJ, that the mean 

drift is not affected by any imbalance of the displacement field established by the cell itself. 

Finally, the irregular displacement field is projected to a regular grid using Scipy's bivariate 

cubic spline algorithm (open source scientific tools for Python, http://www.scipy.org, 2017). In 

cases in which the displacements at the boundary of the image are significantly larger than 0, 

we apply a two-dimensional Tukey filter with constant 𝛼 = 0.2 in real space (13). 

We calculate the force field again by FTTC which requires a regular grid of discrete 

displacements. Hence, we extrapolate our discrete, irregular displacements on a regular grid 

(Fig. S1B, step 4). Contrary to the previous algorithm, for the optical flow, Tikhonov 

regularization is needed. The FTTC with regularization is performed as described in Ref. (3) 

except for the determination of the regularization parameter (Fig. S1B, step 5). Instead of using 

the L-curve criterion as described previously, we use Strong Robust Generalized Cross 

Validation (R1GCV) (14). Here, for the tuning parameter 𝛾, a value of 0.95 is used. From the 

calculated traction force maps, we again determine the total force as described previously (Fig. 

S1B, step 6).  
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2.3 Error Evaluation 
In order to evaluate the error included in our data and analysis independent of the specific 

algorithm, we define a quantity which takes into account the whole data acquisition process at 

once. This error can be defined by the vector sum over all traction forces. Theoretically, for 

adherent, non-motile cells, the summation over all traction forces should yield no total net 

force. However, practically, this is not the case due to statistical noise and discretization error 

in the evaluation process. We can thus define the total error as a function in time as 

e(t) =
|∑x̄T̄(�̅�,t)|

∑x̄|T̄(x̄,t)|
 

(12) 

For the presented data, we observe that the error function reaches a stable level after the 

initial contraction period. For the results presented here, we only consider cells which show an 

error level of less than 10 % (Fig. S5). 

 
 

FIGURE S3 Two examples of the total forces with corresponding errors. For both data sets, from 

top to bottom, the total force, the relative error as defined in Eq. 12 and the absolute error are shown. 

(A) Total force of an oscillating platelet with a relative error of between 0.04 and 0.05, corresponding to 

4 % and 5 %, respectively. (B) Total force of a contracting then relaxing platelet. While the relative error 

increases during the relaxation, the absolute error remains below 3 nN. Only cells with less than 10% 

error or 0.1 relative error are considered. This bound is carefully chosen to take several phenomena 

into account. First, platelets may relax again after initial contraction as seen in panel B. Secondly, some 
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platelets contract only slightly. For both situations, an error level of 10 % often corresponds to an 

absolute error of a few nN which is negligible considering the total force level during the whole 

contraction. Lastly, as mentioned previously, we work with images of low SNR, analyzing them with 

several statistical and discrete methods, which leads to an accumulation of small errors. 

 

2.4 Direct comparison of both methods 
A direct comparison of the results gained by both algorithms for a typical data set is shown in 

Fig. S6. In this case, the cell shown was allowed to spread and contract on a PAA gel with 19 

kPa stiffness and we show the spatial distribution of the force magnitudes T at the end of the 

recorded data set, i.e. after 21 mins after adhesion of the cell to the substrate (Fig. S6A, B), 

and the calculated total force 𝐹𝑡𝑜𝑡 (see Eq. 6) plotted against time (Fig. S6C, D). Despite minor 

visible differences between the outputs of both algorithms in the force magnitude maps, the 

main biophysical results are equally well supported by both methods.  

 

 
 

FIGURE S4 Results for both our algorithms in direct comparison (example on a 19 kPa substrate, 

shown is the last frame of the recording after 21 min). (A) Traction force magnitude maps and (C) 

temporal evolution of the total force 𝐹𝑡𝑜𝑡 as obtained for the PIV-based algorithm. (B, D) Corresponding 

results for the optical flow-based algorithm.  
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3. Dominant Frequency of Temporal Evolution of Force Data 

 
 

FIGURE S5 For each platelet, the dominant frequency of the temporal evolution of the total force 

was determined. Here, we only considered the data after the initial contraction, i.e. only the plateau, 

oscillating and relaxing parts. Furthermore, we were interested in the changes in the total force relative 

to the average force and thus divided the force by the mean force measured in the studied part. To 

avoid the influence of high-frequency noise as well as long-time increases and decreases in force, we 

filtered the data with a band-pass filter to only include frequencies between 10 and 35 mHz. In general, 

the platelets we consider to be oscillating from inspecting the movies directly exhibit a higher amplitude 

in the Fourier domain than non-oscillating cells. While non-oscillating cells very rarely show the relative 

amplitudes of 10 or higher, oscillating cells show amplitudes as high as 50. Also, the frequency band in 

which the highest frequency for oscillating platelets is detected is comparably narrow with an average 

frequency of about 12.8 mHz. 
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4. Temporal evolution of the total forces  

 

 

Figure S6: Data from Fig. 2B replotted including the standard deviation instead of standard error. The 

strong overlap between the different data sets becomes even more apparent in this form, suggesting 

that force generation does not depend on stiffness for fully activated platelets in the stiffness range 

between 19 and 83 kPa. 

 

 

 

 

 

 

 

 

 

 

 

 



 12 

5. Mathematical Model 

The cytoskeleton of blood platelets of height ℎ𝑐 is modelled as a thin elastic disc of radius 𝑟0, 

Young's modulus 𝐸𝑐, Poisson's ratio 𝑣𝑐 and an isotropic active contractile stress 𝜎0. In order 

to model the elastic interaction of the platelet with its environment, the elastic disc is further 

connected to the underlying substrate using a spring stiffness density Y, representing both the 

substrate stiffness and the stiffness of the focal adhesion (FA) bonds (15). This yields the force 

balance equation1:  

𝜎𝑖𝑗,𝑗 − 𝑌𝑑𝑖/ℎ𝑐 = 0 (13) 

We assume small displacements 𝑑𝑖 with respect to the cell size and therefore use the 

linearized strain 𝜖𝑖𝑗 =
1

2
(𝑑𝑖,𝑗 + 𝑑𝑗,𝑖), which leads to the constitutive relation: 

ℎ𝑐𝜎𝑖𝑗 = 2𝜇𝜖𝑖𝑗 + (𝜆𝜖𝑘𝑘 + ℎ𝑐𝜎0)𝛿𝑖𝑗 (14) 

with the two-dimensional Lamé coefficients  

𝜆 =
ℎ𝑐𝐸𝑐𝜈𝑐
1 − 𝜈𝑐

2
 

(15) 

and  

𝜇 =
ℎ𝑐𝐸𝑐

2(1 + 𝜈𝑐)
  . 

(16) 

We further assume a constant active stress 𝜎0 throughout the platelet, which leads to 𝜎0,𝑖 = 0 

within the platelet and manifests itself as the remaining stress normal to the exterior boundary 

of the platelet, introduced via the boundary conditions. The force balance equation now 

simplifies to:  

ℎ𝑐𝜎𝑖𝑗,𝑗 = 𝜆𝑑𝑘,𝑘𝑖 + 𝜇(𝑑𝑖,𝑗𝑗 + 𝑑𝑗,𝑖𝑗) = 𝑌𝑑𝑖 (17) 

Rearranging this equation we write: 
1−𝜈𝑐

2
𝑑𝑖,𝑗𝑗 +

1+𝜈𝑐

2
𝑑𝑗,𝑖𝑗 =

𝑑𝑖

𝑙𝐿
2, where 𝑙𝐿 is the localization length, 

𝑙𝐿 = √
ℎ𝑐𝐸𝑐

𝑌(1−𝜈𝑐
2)

 and can be interpreted as the length, up to which a point force is transmitted. 

To distinguish between the elastic contributions of the adhesion bonds themselves and 

substrate stiffness we calculate the localization length via the interpolation formula introduced 

previously 2 (16): 

𝑙𝐿 = √
𝐸𝑐ℎ𝑐
𝑁𝑎𝑘𝑎

+
𝐸𝑐ℎ𝑐
2𝜋𝐸𝑠

(
1

𝜋ℎ𝑠(1 + 𝜈𝑠)
+
1

𝑟0
)
−1

   

(18) 

 

Here, 𝐸𝑆, and 𝜈𝑠 are the Young’s modulus and Poisson ratio of the substrate, respectively, 

𝑁𝑎 is the density (per unit area) of adhesion complexes at the cell-substrate interface, and 
𝑘𝑎  is a local effective spring constant of an adhesion complex. This reveals an expression for 

the effective stiffness density, 𝑌, that accounts for the combined stiffness of the focal 
adhesion layer and the substrate as follows:  

𝑌 =
ℎ𝑐𝐸𝑐

𝑙𝐿
2(1 − 𝜈𝑐

2)
=

1

1 − 𝜈𝑐
2

𝑁𝑎𝑘𝑎𝐸𝑠/ℎ̃𝑠

𝑁𝑎𝑘𝑎 + 𝐸𝑠/ℎ̃𝑠
 

 

(19) 

where  ℎ̃𝑠
−1 =

1

2(1+𝑣𝑠)ℎ𝑠
+

𝜋

2𝑟0
. 

 

                                                           
1 Indices before a comma refer to tensor indices, indices after a comma to derivatives. 
2 The interpolation formula has been derived for a 1D cell and matrix system; we adopt it here as an 

approximation that correctly captures the effects of substrate stiffness and thickness.     
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Introducing the strain tensor in cylindrical coordinates into the constitutive relation (Eq. 17) 

yields 

𝑟2
𝜕2𝑑𝑟
𝜕𝑟2

+ 𝑟
𝜕𝑑𝑟
𝜕𝑟

− (1 +
𝑟2

𝑙𝐿
2)𝑑𝑟 = 0 

(20) 

with the boundary conditions 𝑑𝑟 = 0 at 𝑟 = 0 and  
𝜕𝑑𝑟
𝜕𝑟

+
𝜆

𝜆 + 2𝜇

𝑑𝑟
𝑟
= −

𝜎0
𝜆 + 2𝜇

 
(21) 

at 𝑟 = 𝑟0. The resulting radial displacement denotes 

𝑑𝑟(𝑟) = −𝑙𝐿 ∙
𝜎0

𝜆 + 2𝜇
∙

𝐼1 (
𝑟
𝑙𝐿
)

𝐼0 (
𝑟0
𝑙𝐿
) −

2𝜇
𝜆 + 2𝜇

∙
𝑙𝐿
𝑟0
∙ 𝐼1 (

𝑟0
𝑙𝐿
)
 

 

(22) 

with modified Bessel functions of first kind 𝐼0 and 𝐼1. The total traction force 𝐹𝑡𝑜𝑡 can then be 

calculated via the extension of the elastic connections representing the substrate. In total, this 

amounts to 

𝐹𝑡𝑜𝑡 = 𝑌 ∙ ∫ |𝑑𝑟(𝑟)|
𝐴0

𝑑𝐴 = ∫ 𝑑𝜑∫ 𝑑𝑟 𝑟 (−𝑑𝑟(𝑟))
𝑟0

0

2𝜋

0

 

=
2𝜋𝑌𝑙𝐿𝜎0
𝜆 + 2𝜇

∙
∫ 𝑑𝑟
𝑟0
0

𝑟𝐼1 (
𝑟
𝑙𝐿
)

𝐼0 (
𝑟0
𝑙𝐿
) −

2𝜇
𝜆 + 2𝜇

∙
𝑙𝐿
𝑟0
∙ 𝐼1 (

𝑟0
𝑙𝐿
)
 

 

 

  (23) 

 

Carrying out the integration one finds: 

𝐹𝑡𝑜𝑡 = 𝜋
2𝑟0ℎ𝑐𝜎0

𝐼1 (
𝑟0
𝑙𝐿
)𝐿0 (

𝑟0
𝑙𝐿
) − 𝐼0 (

𝑟0
𝑙𝐿
)𝐿1 (

𝑟0
𝑙𝐿
)

𝐼0 (
𝑟0
𝑙𝐿
) − (1 − 𝜈𝑐) ∙

𝑙𝐿
𝑟0
∙ 𝐼1 (

𝑟0
𝑙𝐿
)

 

 

(24) 

 

where 𝐿𝑛(𝑥) is the modified Struve function. One has, 𝐿0(0) = 𝐿1(0) = 0, hence for soft 

substrates where 𝑙𝐿 ⟶ (
ℎ𝑐𝐸𝑐

𝐸𝑠/ℎ̃𝑠
)
1/2
⟶∞, 𝐹𝑡𝑜𝑡 → 0 as expected. For stiff substrates, 𝐸𝑠 ≫

𝑁𝑎𝑘𝑎ℎ̃𝑠, 𝑙𝐿 decreases to a minimal value, 𝑙𝐿
𝑚𝑖𝑛 = (

ℎ𝑐𝐸𝑐

𝑁𝑎𝑘𝑎
)
1/2

, and 𝐹𝑡𝑜𝑡 saturates at its maximum 

value (as given by Eq. 24 with the replacement of 𝑙𝐿 by 𝑙𝐿
𝑚𝑖𝑛). The rate at which the total force 

increases towards the saturation value is dictated by two distinct factors, 𝑁𝑎𝑘𝑎, and  ℎ𝑐𝐸𝑐. As 

shown in Fig. 3D in the main text, the smaller these factors are, the more quickly 𝐹𝑡𝑜𝑡 reaches 

its saturation value as 𝐸𝑠 is increased.  

To gain insight into the functional dependence of 𝐹𝑡𝑜𝑡 on 𝑟0 we use the two asymptotic trends 

of the Bessel functions, 𝐼𝑛(𝑥).  For 𝑥 ≫ 𝑛 one has, 

 𝐼𝑛(𝑥) ≈ exp[𝑥]/√2𝜋𝑥. Using this approximation in Eq. 23 and expanding to first order in 𝑙𝐿/𝑟0 

we find: 

𝐹𝑡𝑜𝑡
2𝜋𝑟0

≈ 𝜎0ℎ𝑐 [1 + (
1

2
− 𝜈𝑐)

𝑙𝐿
𝑟0
+ 𝑂 [(

𝑙𝐿
𝑟0
)
2

]] 

 

(25) 

 

Thus, for well spread cells with 𝑟0 ≫ 𝑙𝐿 one finds: 𝐹𝑡𝑜𝑡/(2𝜋𝑟0ℎ𝑐) = 𝜎0. This is consistent with 

the tractions being concentrated at the cell periphery and sustaining a uniform tensile stress, 

𝜎0 in the cytoskeleton, as pointed out in Ref. (17). 
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In the opposite limit, 𝑥 ≪ 𝑛, the Bessel functions can be approximated as: 

𝐼𝑛(𝑥) ≈
1

𝑛!
(
𝑥

2
)
𝑛
, and in particular 𝐼0(𝑥) ≈ 1 and 𝐼1(𝑥) ≈

𝑥

2
. Consequently, in small cells where  

𝑟0 ≪ 𝑙𝐿 the radial tractions underneath the cell 𝑇𝑟(𝑟) = 𝑌𝑑𝑟(𝑟) increase linearly with the radial 

distance, 𝑟, as predicted by Eq. 22. With this traction profile one finds the following scaling of 

the total force:   

𝐹𝑡𝑜𝑡
2𝜋𝑟0

≈
𝜎0ℎ𝑐

2(1 + 𝜈𝑐)
(
𝑟0
𝑙𝐿
)
2

. 

 

(26) 

Thus, as shown in Fig. S9, plotting the maximum value of the scaled total force, 𝐹𝑡𝑜𝑡
𝑚𝑎𝑥 (2𝜋𝑟0)⁄ , 

as a function of the cell radius, may principally reveal two cell characteristics of interest. In the 

limit of large cell radii the curve tends to saturate at an asymptotic value  𝜎0ℎ𝑐 reflecting the 

uniform tension in the cytoskeleton. In practice we see that this saturation level is reached at 

cell radii that are beyond a typical platelet size. Moreover, from the scatter plot we cannot rule 

out the possibility that 𝜎0 is a function of the cell radius itself. In the limit of small 𝑟0, the rate of 

increase of 𝐹𝑡𝑜𝑡
𝑚𝑎𝑥 (2𝜋𝑟0)⁄ , with 𝑟0 is dictated by 1/𝑙𝐿

2, which for rigid substrates, is given by, 
ℎ𝑐𝐸𝑐

𝑁𝑎𝑘𝑎
 

- the ratio of the cytoskeleton to adhesion-layer stiffness.     

 
 
FIGURE S7: Scaled total force as a function of the platelet radius. The solid line provides a best fit 

of Eq. 24 to the data. The dashed lines correspond to Eqs. 25 and 26 and show the respective 

asymptotes to the mean cell behavior. As noted in the text, the shape of the 𝐹𝑡𝑜𝑡
𝑚𝑎𝑥 (2𝜋𝑟0)⁄  curve is 

bounded by two platelet characteristics: the saturation level of the scaled force is dictated by ℎ𝑐𝜎0𝑐, the 

generated platelet contractility, and the initial slope of the curve is dictated by 
ℎ𝑐𝐸𝑐

𝑁𝑎𝑘𝑎
, the ratio of the 

cytoskeleton to adhesion layer stiffness.  
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5.1 Cell and Substrate Parameters for the Model 

 
TABLE S2 Parameters used in the calculation of the mathematical model 

Quantity Parameter Value 

Free fit parameters:   

Localization length 
𝑙𝐿 Determined using 

conjugate gradients 

Active contractile stress 
𝜎0 Determined using 

conjugate gradients 

Fixed parameters:   

Platelet stiffness (17)  𝐸𝑐 5 kPa 

Cell Poisson ratio (18) 𝑣𝑐 0.3 

Thickness of the platelet (19) ℎ𝑐 100 nm  

Typical platelet radius 𝑟0 5 m 

Adhesion layer stiffness density 𝑁𝑎𝑘𝑎 0.3 nN/m3 

Elastic modulus of the substrate 𝐸𝑠 19 - 83 kPa 

Thickness of substrate ℎ𝑠 50 m 

Poisson’s ratio of the substrate (20) 𝜈𝑠 0.3 

 

The typical platelet size was estimated from the movies. The adhesion layer stiffness density 

was estimated from the expression for the localization length, given our assumed value for 𝐸𝑐, 

ℎ𝑐   and 𝑣𝑐. The substrate stiffness and thickness were determined experimentally. 
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6. Simulation of force patterns 

 

 

Figure S8: Typical simulated traction patterns used to reproduce the force anisotropy in Figure 

4C and 4D. The simulated traction patterns consist of 8 stress hot spots which are placed on the 

same circle line to account for the peripheral location of traction hot spots in the experiments. Further, 

all force vectors are pointing towards the center of the image. The positions of the first 7 hot spots, 

each of which has the same stress magnitude, are sampled from a uniform distribution. The last hot 

spot is placed at the opposite side of the average traction spot position. Its stress magnitude is chosen 

such that the overall net force becomes zero.  
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