Sweet Surfactants: Packing Parameter-Invariant Amphiphiles as Emulsifiers and Capping Agents for Morphology Control of Inorganic Particles

Michael Voggel, a Rebecca M. Meinusch, a Vanessa Siewert, a Marius Kunkel, a Valentin Wittmann a* and Sebastian Polarz a*

Electronic Supporting Information - Additional synthetic details

Synthesis and characterization of glycosurfactants ... S2
NMR and mass spectra .. S7
Synthesis and characterization of glycosurfactants

GalαC₆

GalαC₆ was synthesized according to general procedure 2.2.2 in diethyl ether at 0 °C and purified by FC (petroleum ether/ethyl acetate = 18:1) to yield 44 % of the benzylated α-compound (β-compound could not be separated from impurities), which was consecutively deprotected by hydrogenation in 97 % yield to give GalαC₆ as white solid. R_f = 0.35 (CH₂Cl₂/MeOH 12:1); 1H NMR (400 MHz, DMSO-d₆): δ = 4.60 (d, J = 3.5 Hz, 1 H, H-1), 4.51–4.49 (m, 2 H, OH-3, OH-6), 4.37 (d, J = 6.2 Hz, 1 H, OH-2), 4.31 (d, J = 4.2 Hz, 1 H, OH-4), 3.69 (t, J = 3.1 Hz, 1 H, H-4), 3.60–3.47 (m, 5 H, H-7a, H-2, H-5, H-3, H-6a), 3.42 (dt, J = 6.0 Hz, 5.5 Hz, 1 H, H-6b), 3.31 (m, H-7b), 1.52 (m, 2 H, H-8), 1.35–1.21 (m, 6 H, H-9, H-10, H-11), 0.86 (t, J = 6.4 Hz, 3 H, H-12); 13C NMR (101 MHz, DMSO-d₆): δ = 99.3 (C1), 71.7 (C2/3/5), 70.1 (C2/3/5), 69.3 (C2/3/5), 68.9 (C4), 67.4 (C7), 61.1 (C6), 31.6 (C9–11), 29.6 (C8), 25.9 (C9–11), 22.6 (C9–11), 14.4 (C12) ppm.

GalβC₆

GalβC₆ was synthesized according to general procedure 2.2.2 in CH₂Cl₂ at -78 °C and purified by FC (petroleum ether/ethyl acetate = 24:1) to yield 72 % of the benzylated β-compound as yellow oil, which was consecutively deprotected by hydrogenation in 58 % yield to give GalβC₆ as white solid. R_f = 0.34 (CH₂Cl₂/MeOH 12:1); 1H NMR (400 MHz, DMSO-d₆): δ = 4.76 (d, J = 4.2 Hz, 1 H, OH-2), 4.66 (s, 1 H, OH-3), 4.53 (t, J = 5.6 Hz, 1 H, OH-6), 4.32 (d, J = 4.3 Hz, 1 H, OH-4), 4.04 (d, J = 4.5 Hz, 1 H, H-1), 3.72 (dt, J = 9.4 Hz, 6.9 Hz, 1 H, H-7a), 3.61 (s, 1 H, H-4), 3.58–3.37 (m, 3 H, H-6, H-7b), 3.01 (m, 1 H, H-5), 3.26–3.24 (m, 2 H, H-2, H-3), 1.51 (p, J = 6.9 Hz, 2 H, H-8), 1.34–1.21 (m, 6 H, H-9, H-10, H-11), 0.86 (t, J = 7.0 Hz, 3 H, H-12) ppm; 13C NMR (101 MHz, DMSO-d₆): δ = 103.4 (C1), 75.1 (C5), 73.5 (C2/3), 70.5 (C2/3), 68.3 (C7), 68.1 (C4), 60.4 (C6), 31.1 (C9–11), 29.3 (C8), 25.2 (C9–11), 22.1 (C9–11), 13.9 (C12) ppm.

Galα/βC₆

Galα/βC₆ was synthesized according to general procedure 2.2.2 in diethyl ether at 0 °C and purified by FC (petroleum ether/ethyl acetate = 40:1 to 30:1) to yield 3 % of the benzylated α-compound and 11 % of the benzylated β-compound (overall yield of reaction: 76 %; α/β-ratio: 1.09:1). The benzylated compounds were consecutively deprotected by hydrogenation to give GalαC₆ in quantitative yield and GalβC₆ in 95 % as white solids. $R_f(\alpha) = 0.6$ (CH₂Cl₂/MeOH 6:1); 1H NMR (α) (400 MHz, DMSO-d₆): δ = 4.62 (d, J = 3.4 Hz, 1 H, H-1), 4.53–4.49 (m, 2 H, OH-3, OH-6), 4.37 (d, J = 6.3 Hz, 1 H, OH-2), 4.32 (d, J = 4.2 Hz, 1 H, OH-4), 3.70 (t, J = 3.6 Hz, 1 H, H-4), 3.60–3.40 (m, 6 H, H-2, H-3, H-5, H-6, H-7a), 3.30–3.28 (m, 1 H, H-7b), 1.56–1.49 (m, 2 H, H-8), 1.33–1.26 (m, 10 H, H-9, H-10, H-11, H-12, H-13), 0.86 (t, J = 6.6 Hz, 3 H, H-14) ppm; 13C NMR (α) (101 MHz, DMSO-d₆): δ = 98.8 (C1), 71.2 (C2/3/5), 69.6 (C2/3/5), 68.8 (C2/3/5), 68.4 (C4), 66.4 (C7), 60.6 (C6), 31.2 (C9–13), 29.1 (C9–13), 28.8 (C8), 28.7 (C9–13), 25.7 (C9–13), 22.1 (C9–13), 13.9 (C14) ppm. $R_f(\beta) = 0.63$ (CH₂Cl₂/MeOH 5:1); 1H NMR (β) (400 MHz, DMSO-d₆): δ = 4.76 (d, J = 4.3 Hz, 1 H, OH-2), 4.64 (d, J = 4.9 Hz, 1 H, OH-3), 4.53 (t, J = 5.6 Hz, 1 H, OH-6), 4.31 (d, J = 4.4 Hz, 1 H,
Galα/βC₁₀

Galα/βC₁₀ was synthesized according to general procedure 2.2.2 in diethyl ether at 0 °C and purified by FC (petroleum ether/ethyl acetate = 40:1 to 30:1) to yield 13 % of the benzylated α-compound and 17 % of the benzylated β-compound (overall yield of reaction: 68 %; α/β-ratio: 1.36:1). The benzylated compounds were consecutively deprotected by hydrogenation to give GalαC₁₀ in 87 % yield and GalβC₁₀ in quantitative yield as white solids.

Galα/βC₁₂

Galα/βC₁₂ was synthesized according to general procedure 2.2.2 in diethyl ether at 0 °C and purified by FC (petroleum ether/ethyl acetate = 20:1) to yield 18 % of the benzylated α-compound and 21 % of the benzylated β-compound (overall yield of reaction: 62 %; α/β-ratio: 0.55:1). The benzylated compounds were consecutively deprotected by hydrogenation to give GalαC₁₂ in 95 % yield and GalβC₁₂ in 99 % yield as white solids.
$R_f(\beta) = 0.41$ (CH$_2$Cl$_2$/MeOH 5:1); 1H NMR (\(\beta\)) (400 MHz, DMSO-d$_6$): $\delta = 4.04$ (d, J = 7.5 Hz, 1 H, H-1), 4.30-3.78 (brs, 4 H, OH), 3.76-3.67 (m, 1 H, H-7a), 3.64-3.61 (m, 1 H, H-3), 3.59-3.44 (m, 2 H, H-6), 3.42-3.36 (m, 1 H, H-7b), 3.33-3.28 (m, 1 H, H-5), 3.28-3.22 (m, 2 H, H-2, H-4), 1.57-1.45 (m, 2 H, H-8), 1.34-1.19 (m, 18 H, H-9 - H-17), 0.86 (t, J = 6.8 Hz, H-18) ppm; 13C NMR (\(\beta\)) (101 MHz, DMSO-d$_6$): $\delta = 103.4$ (C1), 75.1 (C5), 73.5 (C4), 71.1 (C2), 68.8 (C7), 68.1 (C3), 60.4 (C6), 31.3, 29.3, 29.1-29.85, 28.9, 28.7, 25.5 (C8-16), 22.1 (C17), 13.9 (C18) ppm.

Man\(\alpha\)C$_6$

Man\(\alpha\)C$_6$ was prepared according to general procedure 2.2.1. The acetylated product was purified by FC (petroleum ether/ethyl acetate =10:1) to yield 26 % of the acetylated α-product as yellow oil. After deprotection following the Zemplén protocol, Man\(\alpha\)C$_6$ was obtained in 95 % yield as white solid. $R_f = 0.37$ (CH$_2$Cl$_2$/MeOH 5:1); 1H NMR (400 MHz, DMSO-d$_6$): $\delta = 4.72$ (brs, 1 H, OH), 4.66 (brs, 1 H, OH), 4.57 (d, J = 1.5 Hz, 1 H, H-1), 4.40 (t, J = 5.7 Hz, 1 H, OH-6), 4.09 (d, J = 5.0 Hz, 1 H, OH), 3.67-3.61 (m, 1 H, H-6a), 3.60-3.55 (m, 2 H, H-7a, H-2), 3.48-3.40 (m, 2 H, H-3, H-6b), 3.40-3.33 (m, 1 H, H-4), 3.33-3.25 (m, 2 H, H-7b, H-5), 1.54-1.43 (m, 2 H, H-8), 1.35-1.20 (m, 6 H, H-9 - H-11), 0.86 (t, J = 6.9 Hz, 3 H, H-12) ppm.

Man\(\alpha\)/βC$_8$

Man\(\alpha\)/βC$_8$ was prepared according to general procedure 2.2.1 at 0 °C. The acetylated product was purified by FC (petroleum ether/ethyl acetate =10:1) to yield 25 % of the acetylated α-product and 11 % of the acetylated β-product as yellow oils. After deprotection following the Zemplén protocol, Man\(\alpha\)C$_8$ was obtained in 72 % yield and Man\(\beta\)C$_8$ in 95 % yield as slightly yellow solids. $R_f (\alpha)$= 0.40 (CH$_2$Cl$_2$/MeOH 5:1); 1H NMR (\(\alpha\)) (400 MHz, DMSO-d$_6$): $\delta = 4.68$ (d, J = 5.2 Hz, 1 H, OH-4), 4.65 (d, J = 4.6 Hz, 1 H, OH-2), 4.57 (d, J = 1.3 Hz, 1 H, H-1), 4.51 (d, J = 6.1 Hz, 1 H, OH-3), 4.40 (t, J = 5.9 Hz, 1 H, OH-6), 3.67-3.62 (m, 1 H, H-6a), 3.62-3.54 (m, 2 H, H-7a, H-2), 3.47-3.39 (m, 2 H, H-3, H-6b), 3.39-3.33 (m, 1 H, H-4), 3.32-3.24 (m, 2 H, H-7b, H-5), 1.57-1.40 (m, 2 H, H-8), 1.36-1.19 (m, 10 H, H-9 - H-13), 0.86 (t, J = 6.9 Hz, 3 H, H-14) ppm.

Man\(\alpha\)/βC$_{10}$

Man\(\alpha\)/βC$_{10}$ was prepared according to general procedure 2.2.1 at 0 °C. The acetylated product was purified by FC (petroleum ether/ethyl acetate =20:1) to yield 54 % of the acetylated α-product and 13 % of the acetylated β-product as yellow oils. After deprotection following the Zemplén protocol, Man\(\alpha\)C$_{10}$ was obtained in 66 % yield and Man\(\beta\)C$_{10}$ in 86 % yield as slightly yellow solids. $R_f (\alpha)$= 0.46 (CH$_2$Cl$_2$/MeOH 5:1); 1H NMR (\(\alpha\)) (400 MHz, DMSO-d$_6$): $\delta = 4.67$ (d, J = 5.0 Hz, 1 H, OH-4), 4.64 (d, J = 4.4 Hz, 1 H, OH-2), 4.58 (s, 1 H, H-1), 4.49
Manα/βC12

Manα/βC12 was prepared according to general procedure 2.2.1 at -50 °C. The acetylated product was purified by FC (petroleum ether/ethyl acetate =5:1) to yield 73 % of the acetylated α-product and 1 % of the acetylated β-product as yellow oils. After deprotection following the Zemplén protocol, ManαC12 was obtained in 94 % yield and ManβC12 in 92 % yield as white solids. Rf (α) = 0.32 (CH2Cl2/MeOH 10:1); 1H NMR (α) (400 MHz, DMSO-d6): δ = 4.66 (d, J = 5.3 Hz, 1 H, OH-4), 4.63 (d, J = 4.4 Hz, 1 H, OH-2), 4.58 (d, J = 1.3 Hz, 1 H, H-1), 4.48 (d, J = 6.2 Hz, 1 H, OH-3), 4.36 (d, J = 6.0 Hz, 1 H, OH-6), 3.67-3.60 (m, 1 H, H-6a), 3.60-3.54 (m, 2 H, H-7a, H-2), 3.48-3.34 (m, 2 H, H-6b, H-7b), 3.32-3.18 (m, 2 H, H-4, H-3), 3.03-2.96 (m, 1 H, H-5), 1.56-1.44 (m, 2 H, H-8), 1.33-1.18 (m, 14 H, H-9 - H-15), 0.86 (t, J = 6.9 Hz, 3 H, H-16) ppm; 13C NMR (α) (101 MHz, DMSO-d6): δ = 100.2 (C1), 77.5 (C5), 73.7 (C3), 70.6 (C2), 68.4 (C7), 67.2 (C4), 61.4 (C6), 31.3, 29.2, 29.1-28.8, 25.6 (C8-14), 22.1 (C15), 13.9 (C16) ppm.

Glca/βC12

Glca/βC12 was prepared according to general procedure 2.2.1 at -50 °C. The acetylated product was purified by FC (petroleum ether/ethyl acetate =5:1) to yield 14 % of the acetylated α-product and 62 % of the acetylated β-product as yellow oils. After deprotection following the Zemplén protocol, GlcaC12 was obtained in 96 % yield and GlcβC12 in 99 % yield as white solids. Rf (α) = 0.50 (CH2Cl2/MeOH 5:1); 1H NMR (α) (400 MHz, DMSO-d6): δ = 4.84-4.36 (brs, 4 H, OH), 4.60 (d, J = 3.7 Hz, 1 H, H-1), 3.63-3.54 (m, 2 H, H-6a, H-7a), 3.47-3.25 (m, 4 H, H-6b, H-3, H-5, H-7b), 3.21-3.13 (dd, J = 9.7, 3.7 Hz, 1 H, H-2), 3.05 (d, J = 9.1 Hz, 1 H, H-4), 1.57-1.45 (m, 2 H, H-8), 1.36-1.18 (m, 18 H, H-9 - H-17), 0.85 (t, J = 6.9 Hz, 3 H, H-18) ppm; 13C NMR (α) (101 MHz, DMSO-d6): δ = 98.5 (C1), 73.3 (C3), 72.7 (C5), 72.0 (C2), 70.3 (C4), 66.8 (C7), 60.9 (C6), 31.3, 29.16-28.81, 28.7, 25.7 (C8-16), 22.1 (C17), 13.9 (C18) ppm.
R_f (β) = 0.47 (CH$_2$Cl$_2$/MeOH 5:1); 1H NMR (β) (400 MHz, DMSO-d_6): δ = 5.05-4.64 (brs, 4 H, OH), 4.09 (d, J = 7.7 Hz, 1 H, H-1), 3.78-3.70 (m, 1 H, H-7a), 3.68-3.62 (m, 1 H, H-6a), 3.46-3.36 (m, 2 H, H-6b, H-7b), 3.14-2.99 (m, 3 H, H-3, H-5, H-4), 2.95-2.89 (m, 1 H, H-2), 1.55-1.45 (m, 2 H, H-8), 1.33-1.18 (m, 18 H, H-9 - H-17), 0.85 (t, J = 6.9 Hz, 3 H, H-18) ppm; 13C NMR (β) (101 MHz, DMSO-d_6): δ = 102.8 (C1), 76.8, 76.8 (C3, C5), 73.4 (C2), 70.1 (C4), 68.5 (C7), 61.1 (C6), 31.3, 29.3, 29.08-28.98, 28.9, 28.7, 25.5 (C8-16), 22.1 (C17), 13.9 (C18) ppm.

Xylα/XylβC$_{12}$

Xylα/XylβC$_{12}$ was prepared according to general procedure 2.2.3. The acetylated product was purified by FC (petroleum ether/ethyl acetate =10:1) to yield 21 % of the acetylated α-product and 10 % of the acetylated β-product as yellow oils. After deprotection following the Zemplén protocol, XylαC$_{12}$ was obtained in 96 % yield and XylβC$_{12}$ in 85 % yield as white solids. R_f (α) = 0.52 (CH$_2$Cl$_2$/MeOH 5:1); 1H NMR (α) (400 MHz, DMSO-d_6): δ = 4.87 (d, J = 4.1 Hz, 1 H, OH-3), 4.74 (d, J = 4.7 Hz, 1 H, OH-4), 4.57 (d, J = 6.4 Hz, 1 H, OH-2), 4.55 (d, J = 3.7 Hz, 1 H, H-1), 3.58-3.49 (m, 1 H, H-6a), 3.41-3.29 (m, 3 H, H-5a, H-4, H-6b), 3.28-3.22 (m, 2 H, H-3, H-5b), 3.19-3.13 (m, 1 H, H-2), 1.57-1.46 (m, 2 H, H-7), 1.36-1.19 (m, 18 H, H-8 - H-16), 0.86 (t, J = 6.9 Hz, 3 H, H-17) ppm. R_f (β) = 0.62 (CH$_2$Cl$_2$/MeOH 5:1); 1H NMR (β) (400 MHz, DMSO-d_6): δ = 4.91-4.85 (m, 3 H, OH), 4.06 (d, J = 7.6 Hz, 1 H, H-1), 3.71-3.62 (m, 2 H, H-5a, H-6a), 3.44-3.36 (m, 1 H, H-6b), 3.28-3.21 (m, 1 H, H-4), 3.11-3.04 (m, 1 H, H-3), 3.04-2.97 (m, 1 H, H-5b), 2.97-2.89 (m, 1 H, H-2), 1.55-1.44 (m, 2 H, H-7), 1.34-1.17 (m, 18 H, H-8 - H-16), 0.86 (t, J = 6.9 Hz, 3 H, H-17) ppm; 13C NMR (β) (101 MHz, DMSO-d_6): δ = 103.6 (C1), 76.6 (C3), 73.2 (C2), 69.6 (C4), 68.5 (C6), 65.6 (C5), 31.2, 29.3, 29.0-28.9, 28.8, 28.6, 25.5 (C7-15), 22.0 (C16), 13.9 (C17) ppm.
NMR and mass spectra

1H NMR (CDCl$_3$, 400 MHz) of (6-hydroxyhexyl)-triphenylphosphonium bromide

31P NMR (CDCl$_3$, 161.8 MHz) of (6-hydroxyhexyl)-triphenylphosphonium bromide
1H NMR (CDCl$_3$, 400 MHz) of 3

13C NMR (CDCl$_3$, 100.5 MHz) of 3
1H NMR (CDCl$_3$, 400 MHz) of 4α

13C NMR (CDCl$_3$, 100.5 MHz) of 4α
ESI-HRMS of 4α

calcd (red) for C_{26}H_{42}O_{10}Na [M+Na]^+: 537.2669;
found (black): 537.2762
1H NMR (CDCl$_3$, 400 MHz) of 4β

13C NMR (CDCl$_3$, 100.5 MHz) of 4β
ESI-HRMS of 4β

calcd (red) for C_{26}H_{42}O_{10}Na [M+Na]^+:
537.2669;
found (black): 537.2672
1H NMR (CDCl$_3$, 400 MHz) of 5α.

13C NMR (CDCl$_3$, 100.5 MHz) of 5α.
ESI-HRMS of 5α

calcd (red) for C_{26}H_{42}O_{10}Na [M+Na]^+: 537.2669;
found (black): 537.2742
1H NMR (CDCl$_3$, 400 MHz) of 5β

13C NMR (CDCl$_3$, 100.5 MHz) of 5β
ESI-HRMS of 5β

calcd (red) for C_{26}H_{42}O_{10}Na [M+Na]^+: 537.2669;
found (black): 537.2761
1H NMR (DMSO-d_6, 600 MHz) of $\text{Gal} \alpha\text{C}^{\text{uns}}_{12}$

13C NMR (DMSO-d_6, 151 MHz) of $\text{Gal} \alpha\text{C}^{\text{uns}}_{12}$
ESI-HRMS of $\text{Gal}\alpha C_{12}^{\text{uns}}$

calcd (red) for $\text{C}_{18}\text{H}_{34}\text{O}_{6}\text{Na} [\text{M+Na}]^{+}$: 369.2246;
found (black): 369.2226
1H NMR (DMSO-d_6, 400 MHz) of GalβC$_{12}^\text{uns}$

13C NMR (DMSO-d_6, 100.5 MHz) of GalβC$_{12}^\text{uns}$
ESI-HRMS of $\text{Gal}^\beta\text{Cuns}_{12}$

calcd (red) for $\text{C}_{18}\text{H}_{34}\text{O}_6\text{Na}^{\text{[M+Na]}^+}$: 369.2246;
found (black): 369.2250
1H NMR (DMSO-d_6, 400 MHz) of $\text{Man}\alpha C_{\text{uns}}^{12}$

13C NMR (DMSO-d_6, 100.5 MHz) of $\text{Man}\alpha C_{\text{uns}}^{12}$
ESI-HRMS of $\text{Man}_{\alpha}\text{C}_{12}$

calcd (red) for $\text{C}_{18}\text{H}_{34}\text{O}_{6}\text{Na} [\text{M+Na}]^{+}$: 369.2246;
found (black): 369.2208
1H NMR (DMSO-d_6, 400 MHz) of $\text{Man}_b\beta\text{C}^{\text{uns}}_{12}$

13C NMR (DMSO-d_6, 100.5 MHz) of $\text{Man}_b\beta\text{C}^{\text{uns}}_{12}$
calcd (red) for $C_{18}H_{34}O_6Na\ [M+Na]^+$: 369.2246;
found (black): 369.2307

ESI-HRMS of $\text{Man}\beta\text{C}_{\text{uns}}^{12}$