Supporting Information

Liquid Crystalline Moiety-Assisted Perpendicular Orientation of Cylindrical Domains within P4VP-b-PMA(Az) Films with High Aspect Ratio

Ting Qu, Song Guan, Chen Zhang, Xiaoxiong Zheng, Yongbin Zhao, Aihua Chen

a. School of Materials Science and Engineering, Beihang University, Beijing, 100191, P. R. China.
b. Shandong Oubo New Material Co. Ltd, Shandong, 257088, P. R. China.
c. Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing, 100191, P. R. China
Figure S1. 1H NMR spectrum of MA(Az).
Figure S2. 1H NMR spectra of different P4VP macroinitiator and P4VP$_{m-b}$-PMA(Az)$_n$ BCPs.

Figure S3. GPC curves of the P4VP macroinitiators with DMF as eluent, and P4VP$_{m-b}$-PMA(Az)$_n$ BCPs with THF as eluent.

Table S1. Properties of the P4VP macroinitiators and P4VP-b-PMA(Az) BCPs synthesized by the ATRP method.

<table>
<thead>
<tr>
<th>Sample</th>
<th>aM_n (NMR)</th>
<th>bM_n (GPC)</th>
<th>$^cM_w/M_n$</th>
<th>dDP$_{P4VP}$</th>
<th>eDP$_{PMA(Az)}$</th>
<th>ff$_{P4VP}$</th>
<th>gMorphology</th>
</tr>
</thead>
<tbody>
<tr>
<td>P4VP$_{50}$</td>
<td>5,500</td>
<td>7,500</td>
<td>1.05</td>
<td>50</td>
<td>—</td>
<td>1</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>P4VP<sub>100</sub></td>
<td>10,500</td>
<td>12,500</td>
<td>1.12</td>
<td>100</td>
<td>—</td>
<td>1</td>
</tr>
<tr>
<td>----------------</td>
<td>---------------------</td>
<td>--------</td>
<td>--------</td>
<td>------</td>
<td>-----</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>P4VP<sub>100-b-MA(Az)<sub>15</sub></td>
<td>17,880</td>
<td>20,660</td>
<td>1.28</td>
<td>100</td>
<td>15</td>
<td>0.58</td>
<td>sphere</td>
</tr>
<tr>
<td>P4VP<sub>50-b-MA(Az)<sub>10</sub></td>
<td>10,180</td>
<td>13,800</td>
<td>1.28</td>
<td>50</td>
<td>10</td>
<td>0.50</td>
<td>lamellae</td>
</tr>
<tr>
<td>P4VP<sub>100-b-MA(Az)<sub>60</sub></td>
<td>40,020</td>
<td>53,400</td>
<td>1.30</td>
<td>100</td>
<td>60</td>
<td>0.25</td>
<td>cylinder</td>
</tr>
<tr>
<td>P4VP<sub>100-b-MA(Az)<sub>75</sub></td>
<td>47,400</td>
<td>60,300</td>
<td>1.33</td>
<td>100</td>
<td>75</td>
<td>0.21</td>
<td>sphere</td>
</tr>
</tbody>
</table>

a Number-average molecular weight determined by NMR.

b Number-average molecular weight determined by GPC.

c Polydispersity determined by GPC calibrated with polystyrene standards.

d Polymerization degree of P4VP.

e Polymerization degree of PMA(Az).

f The volume fraction of P4VP calculated by using molecular weight and density (P4VP: 1.15 g/cm³ and PMA(Az): 1.10 g/cm³) of each block.

g The morphology of block copolymer film is determined by SEM observations.

![Figure S4](image_url). DSC curves of BCPs on first cooling (a) and second heating processes (b) with heating/cooling rate of ± 10 °C min⁻¹.
Figure S5. SEM images of P4VP$_{100}$-b-PMA(Az)$_{60}$ self-assembled films with 2 µm by thermal annealing (160 °C/1 h and 105 °C/24 h) (a), solvent-annealed in THF vapor (b), IPA vapor (c) and chloroform vapor (d, e) at room temperature for 24 h. d with (10) planes of hexagonal alignment, e with (11) planes of hexagonal alignment, respectively.
Figure S6. SEM (a, b, d-h) and AFM (c) images of P4VPₘ⁻b-PMA(Az)ₙ self-assembled films with different f_{P4VP}, respectively. (a, b) P4VP₁₀₀⁻b-PMA(Az)₇₅ ($f_{P4VP} = 0.21$), (c, d) P4VP₁₀₀⁻b-PMA(Az)₆₀ ($f_{P4VP} = 0.25$), (e, f) P4VP₅₀⁻b-PMA(Az)₁₀ ($f_{P4VP} = 0.50$), (g, h) P4VP₁₀₀⁻b-PMA(Az)₁₅ ($f_{P4VP} = 0.58$). Right images are the schemes of these morphologies, respectively. Blue part and green part represent P4VP and PMA(Az) blocks, respectively.
Figure S7. SEM images of the TiO$_2$ nanomaterials from corresponding templates: (a) top-view of TiO$_2$ nanosphericals from the annealed P4VP$_{100}$-b-PMA(Az)$_{75}$ film with 50 nm thickness; (b) top-view of TiO$_2$ porous films from the annealed P4VP$_{100}$-b-PMA(Az)$_{15}$ film with 50 nm thickness.

Figure S8. (a) Geometrical relationship and center-to-center distances of perpendicular cylinders, wide stripes P and narrow stripes P1. (b) SEM image of (11) planes of hexagonal alignment.
Figure S9. Cross-section SEM images of the solvent-annealed P4VP$_{100-b}$-PMA(Az)$_{60}$ films with different thicknesses: 3 μm (a, b); 4 μm (c, d); 6 μm (e, f); a, c, e with (11) planes of hexagonal alignment; b, d, f with (10) planes of hexagonal alignment, respectively.