Electronic supplementary information

Influence of Molecular Weight on PNIPAM Brush Modified Colloidal Silica Particles

Ben A. Humphreys,¹ Stuart W. Prescott,² Timothy J. Murdoch,¹ Andrew Nelson,³ Elliot Gilbert,³ Grant B. Webber,¹ Erica J. Wanless¹

¹ Priority Research Centre for Advanced Particle Processing and Transport, University of Newcastle, Callaghan, NSW 2308, Australia

² School of Chemical Engineering, UNSW Sydney, NSW 2052, Australia

³ Australian Centre for Neutron Scattering, ANSTO, Lucas Heights, NSW 2234, Australia

Figure S1. Molecular structure of poly(*N*-isopropylacrylamide) (PNIPAM).

Figure S2. Zeta potential of the core silica particles (a) as a function of solution pH at 25 °C and (b) as a function of temperature at pH 9.

Details of Approach to Modelling Temperature Dependent Hydrodynamic Data of Modified Particles in Water

Owing to the unusual shape of the intensity average hydrodynamic diameter (D_{hyd}) as a function of temperature, a simple analytical model, such as a sigmoidal fit, was not adequate to calculate the mid-point temperature used to define the LCST. To accurately determine this temperature, equations SE1 to SE25 (detailed in Table S1) were used to model the increasing temperature results (15 to 45 °C) for the five PNIPAM brush modified samples displayed in Figure 2 of the main manuscript.¹ This enabled the maximum, minimum and mid-point D_{hyd} to be defined (Figure S3 shows the results for the 1 hr sample).

Figure S3. Intensity average hydrodynamic diameter (D_{hyd}) as a function of increasing temperature for 1 hr sample. The diameter has been modelled using the five quadratic equations (SE6 to SE10) in Table S1 and 0.1 °C increments to yield the maximum, minimum and mid-point D_{hyd} and the LCST.

Sample	Temperature	Equation	Quadratic formula	R ²	LCST	
	range (°C)				(°C)	
0.5 hr	8 to 24	SE1	$y = -0.0732x^2 + 1.7228x + 235.83$	0.984	30.72	
	24 to 29	SE2	$y = -0.5286x^2 + 24.689x - 53.383$	0.998		
	29 to 33	SE3	$y = -1.1071x^2 + 57.773x - 525.98$	0.998		
	33 to 35	SE4	$y = 1.2x^2 - 85.7x + 1696.6$	0.996		
	35 to 46	SE5	$y = 0.058x^2 - 5.1511x + 276.44$	0.967		
1 hr	8 to 25 (+)	SE6	$y = -0.1083x^2 + 2.9978x + 231.68$	0.9881		
	25 to 29 (+)	SE7	$y = -0.0446x^2 - 0.6425x + 282.72$	0.9748		
	29 to 33 (+)	SE8	$y = -2.7286x^2 + 157.91x - 2058.9$	0.9934	31.80	
	33 to 36 (+)	SE9	$y = 2.9x^2 - 206.92x + 3849.6$	0.9898		
	36 to 46 (+)	SE10	$y = 0.0573x^2 - 5.0668x + 266.36$	0.9686		
2 hr	8 to 28	SE11	$y = -0.0742x^2 + 1.4465x + 255.77$	0.9853		
	28 to 30	SE12	$y = -0.4196x^2 + 19.452x + 22.021$	0.999		
	30 to 33	SE13	$y = -3.45x^2 + 202.75x - 2749.9 \qquad 0.9984$			
	33 to 36	SE14	$y = 3.\overline{3x^2 - 235.76x + 4369.6} \qquad 0$			
	36 to 46	SE15	$y = 0.0512x^2 - 4.6177x + 258.35$	0.97		
	8 to 25	SE16	$y = -0.1368x^2 + 4.0209x + 246.45$	0.982		
	25 to 30	SE17	$y = -0.2625x^2 + 10.537x + 162.75$	0.986		
4 hr	30 to 34	SE18	$y = -2.95x^2 + 171.33x - 2241.9$	0.999	32.23	
	34 to 36	SE19	$y = 1.4x^2 - 102.9x + 2053.4$	0.989		
	36 to 46	SE20	$y = 0.0656x^2 - 5.8627x + 289.79$	0.968		
	8 to 24	SE21	$y = -0.0832x^2 + 1.4971x + 291.29$	0.9974		
6 hr	24 to 30	SE22	$y = -0.2851x^2 + 11.608x + 165.35$	0.9970		
	30 to 34	SE23	$y = -4.2714x^2 + 254.35x - 3529.7$	0.9997	32.23	
	34 to 37	SE24	$y = 1.725x^2 - 126.63x + 2491.5$	0.9989		
	37 to 46	SE25	$y = 0.0734x^2 - 6.4359x + 305.19$	0.9592		

Table S1. Temperature range and equations used for modelling temperature dependent hydrodynamic diameter for 0.5, 1, 2, 4 and 6 hr samples along with the calculated LCST.

Figure S4. Contrast match results for PNIPAM brush modified particles at 18 °C with the square root of intensity (I) at Q = 0.004 plotted as a function of the % of H₂O in H₂O/D₂O mixture. Red vertical line indicates % H₂O at contrast matched point for the silica core (45.46%).

Preparation of SANS samples

~0.05 g of wet PNIPAM brush modified particles (approximately 50% solvent) were dispersed in 10 mL of a H₂O/D₂O solvent mixture containing 47% H₂O. The SLD of the solvent was determined during the fitting process to be 2.9×10^{-6} Å⁻² indicating slightly more H₂O (50%) in the mixture than expected, which is ascribed to the remaining H₂O in the initial wet polymer brush modified particles. The SLD of the particles was determined to be 3.2×10^{-6} Å⁻² which is in good agreement with Figure S4 (45.5% H₂O in the solvent mixture). The core particle radius was determined to be 650 Å.

Figure S5. FTIR spectra of unmodified silica core particles, and the series of PNIPAM brush modified particles, showing the increase of peaks associated with the PNIPAM brush layer as a function of synthesis time. Data have been normalised to the SiO_2 peak at 1060 cm⁻¹ and vertically offset for clarity.

Figure S6. Percentage weight loss as a function of temperature for the series of PNIPAM brush modified particles (data normalised to the silica core at 180 °C to ensure all weight loss is due to the PNIPAM shell).

SasView sphere onion model description^{2, 3}

This model provides the form factor, P(q), for a multi-shell sphere where the scattering length density (SLD) of each shell is described by an exponential, linear, or constant function. The form factor is normalised by the volume of the sphere where the SLD is not identical to the SLD of the solvent. The *radius* represents the core radius r_0 and *thickness[k]* represents the thickness of the shell, $r_{k+1} - r_k$.

Parameter	Description	units
n_shells	number of shells	none
scale	source intensity	none
background	source background	cm^{-1}
sld_solvent	solvent scattering length density	10 ⁻⁶ Å ⁻²
sld_core	core scattering length density	10 ⁻⁶ Å ⁻²
radius_core	radius of core	Å
sld_in[n_shells]	scattering length density at inner radius of shell k	10 ⁻⁶ Å ⁻²
sld_out[n_shells]	scattering length density at outer radius of shell k	10 ⁻⁶ Å ⁻²
thickness[n_shells]	thickness of shell k	Å
A[n_shells]	decay rate of scattering length density for shell k	$Å^{-1}$

Table S2. Sphere onion model parameters with a description.

Definition

The 1D scattering intensity is calculated in the following way

$$P(q) = [f]^2 / V_{\text{particle}}$$

where

$$f = f_{\text{core}} + \left(\sum_{\text{shell}=1}^{N} f_{\text{shell}}\right) + f_{\text{solvent}}$$

The shells are spherically symmetric with particle density $\rho(r)$ and constant SLD within the core and solvent, so

$$f_{\text{core}} = 4\pi \int_{0}^{r_{\text{core}}} \rho_{\text{core}} \frac{\sin(qr)}{qr} r^{2} dr$$
$$f_{\text{shell}} = 4\pi \int_{r_{\text{shell}-1}}^{r_{\text{shell}}} \rho_{\text{shell}}(r) \frac{\sin(qr)}{qr} r^{2} dr$$
$$f_{\text{solvent}} = 4\pi \int_{r_{N}}^{\infty} \rho_{\text{solvent}} \frac{\sin(qr)}{qr} r^{2} dr$$

and the volume is $V(r) = \frac{4\pi}{3}r^3$. The volume of the particle is determined by the outer shell, so $V_{\text{particle}} = V(r_N)$.

The SLD of a shell is therefore defined by

$$\rho_{\text{shell}}(r) = Bexp(A(r - r_{\text{shell}-1})/\Delta t_{\text{shell}}) + C \text{ for } A \neq 0$$

where $B = \frac{\rho_{\text{out}} - \rho_{\text{in}}}{e^{A} - 1}$ and $C = \frac{\rho_{\text{in}}e^{A} - \rho_{\text{out}}}{e^{A} - 1}$

This function becomes linear as A_shell approaches 0.

2 hr sample						
temperature (°C)	18	25	30	32.5	40	
scale	0.0450	0.0418	0.0333	0.00704	0.00260	
background	0.41	0.41	0.41	0.41	0.42	
sld_solvent	2.9	2.9	2.9	2.9	2.9	
sld_core	3.2	3.2	3.2	3.2	3.2	
radius_core	650	650	650	650	650	
sld_in1	3.2	3.2	3.2	3.2	3.2	
sld_out1	2.3	2.2	2	1.7	1.65	
thickness 1 (Å)	20	20	20	20	20	
A1	-10	-10	-10	-10	-10	
sld_in2	2.3	2.2	2	1.7	1.65	
sld_out2	2.4	2.4	2.5	2.7	2.6	
thickness 2 (Å)	39.738	50	68	80	105	
A2	1	1	2	8	8	
sld_in3	2.4	2.4	2.5	2.7	2.6	
sld_out3	2.9	2.9	2.9	2.9	2.9	
thickness 3 (Å)	3678.5	3479.8	3000	1450	900	
A3	-14.43	-15	-12.5	-5	-14	
χ^2	1.174	1.339	1.777	1.440	2.135	

Table S3. SasView parameters used for modelling SANS data for the 2 hr PNIPAM brush modifiedsample as a function of temperature presented in Figure 5.

Table S4. SasView parameters used for modelling SANS data for the 6 hr PNIPAM brush modifiedsample as a function of temperature presented in Figure 5.

6 hr sample					
temperature (°C)	18	25	30	32.5	40
scale	0.0467	0.0327	0.0307	0.00852	0.00100
background	0.42	0.42	0.43	0.43	0.43
sld_solvent	2.9	2.9	2.9	2.9	2.9
sld_core	3.2	3.2	3.2	3.2	3.2
radius_core	650	650	650	650	650
sld_in1	3.2	3.2	3.2	3.2	3.2
sld_out1	2.3	2.2	2.035	1.8	1.65
thickness 1 (Å)	20	20	20	20	20
A1	-10	-10	-10	-10	-10
sld_in2	2.3	2.2	2.035	1.8	1.65
sld_out2	2.5	2.4	2.43	2.6	2.6
thickness 2 (Å)	160	118	97	120	170
A2	0.5	1	1.8	5	8
sld_in3	2.5	2.4	2.43	2.6	2.6
sld_out3	2.9	2.9	2.9	2.9	2.9
thickness 3 (Å)	3500	3083.7	2800	1487.4	917.71
A3	-10	-10.5	-9	-4.065	-15
χ^2	1.494	1.841	2.835	1.250	2.053

Figure S7. SANS data with fit for (top) 2 hr and (bottom) 6 hr samples at 18 °C for full Q range between 0.004 and 0.75 Å⁻¹

References

- 1. B. A. Humphreys, E. J. Wanless and G. B. Webber, *Journal of Colloid and Interface Science*, 2018, **516**, 153-161.
- M. Doucet, J. H. Cho, G. Alina, J. Bakker, W. Bouwman, P. Butler, K. Campbell, M. Gonzales, R. Heenan, A. Jackson, P. Juhas, S. King, P. Kienzle, J. Krzywon, A. Markvardsen, T. Nielsen, L. O'Driscoll, W. Potrzebowski, R. Ferraz Leal, T. Richter, P. Rozycko and A. Washington, (2017, March 25) SasView version 4.1. Zenodo, https://doi.org/10.5281/zenodo.438138, DOI: (10.5281/zenodo.438138).
- 3. L. A. Feigin and D. I. Svergun, *Structure Analysis by Samll-Angle X-Ray and Neutron Scattering*, Plenum Press, New York, 1987.