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drop 1 drop 2 drops
Surface tension Viscosity Surface tension Viscosity Initial diameter
(mNm™ 1) (mPas) (mNm~1) (mPas) (mm)
Range 46.2 to 72.8 1 to 100 22.9to 46.2 1 to 100 2.00 to 2.92
Error 5% 2% 5% 2% 0.1%

Table 1 Range of the material parameters. The properties of ink-containing liquids were measured as described below; literature values

were taken for the other liquids™ .
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0.2 Surface tension measurements

Surface tension was measured in triplo, using a pendant
drop system (Data Physics OCA 15EC). The surface tension
as a function of the ethanol percentage is shown in figure
1; the dependency of the surface tension on the glycerol
percentage is shown in figure 2, and the time-insensitivity
of the surface tension is shown in figure 3.
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Fig. 1 (Color online) Surface tension of the water-ink-ethanol mix-
ture as a function of the vol% of ethanol (e). 15vol% ink (Brother
LC-800) was dissolved. Literature values of water-ethanol mix-
tures without ink are from2 ().
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Fig. 2 (Color online) Surface tension of the water glycerol mixture,
depending on the vol% of glycerol. For the values used in the

paper (e) 15vol% ink (Brother LC-800) was solved in the glycerol.

Water-glycerol values are taken from Takamura et al® (o).
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Fig. 3 (Color online) Surface tension of various mixtures as a
function of time. 15% ink, 10% ethanol and 75% water (red),
100% ink (blue), 15% ink and 85% ethanol (black).

0.3 Viscosity measurements

Viscosity data was obtained using a rheometer (Anton Paar
MCR 502), or from the literature, when indicated.
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Fig. 4 (Color online) Viscosity of of the water ethanol mixture,
depending on the vol% of ethanol. Measurements (») and data
fit (- = =). 15vol% ink (Brother LC-800) was solved in the ethanol.
Water-ethanol mixtures from ref.Bare shown by the blue line
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Fig. 5 (Color online) Viscosity of the water glycerol mixture as
a function of the vol% of glycerol. Measurements (») and data fit
(- =-). 15vol% ink (Brother LC-800) was solved in the glycerol
mixture. Previously determined values for water-glycerol mixtures
are from? (- - ) and?(- - -).

0.4 Optical penetration depth

To determine the spreading rate, a threshold value for
absorbed light has been chosen in the analysis. The trans-
mission of light versus the optical penetration depth for
the ink solutions are measured using a UV-VIS spectrom-
eter (DR5000, Hach Lange), with pure air and a cuvette
with water as references. The results are shown in figure
[6] For 5 vol% ink a range of transmission has been chosen
between 0.025 < I /Iy < 0.1, corresponding to optical pen-
etration depths of 51um to 78um. The effect of the total
transmittance threshold on the measurements of L(r) is
shown in figure|/| Increasing the transmittance leads to
slightly lower penetration depth, therefore showing faster
spreading. The effects in the ranges studied show the same
exponents, o = 0.77, and prefactors, 0.45f3, for penetration
depths of 63um and 78um. For the smaller penetration
depth of 51um, the prefactor increases to 0.51.
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Fig. 6 (Color online) Optical transmittance of ink (Brother LC-800)
in water solutions versus the penetration depth. 5% transmittance
was chosen as the experimental threshold, corresponding to a
penetration depth of 63um shown by the symbol (o).
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Fig. 7 (Color online) Effect of the threshold value on the
measured spreading distance, 1, = 1n; ~ 1.5 mPas, Ac = 32
mNm~!. Optical penetration depths are 78 um (s), 63 um (o),
and 51 um (e). The dashed line (- - -) indicates L(r) = 0.58:%77 ,
B=A0"(pym) 1V

0.5 Boundary layer thickness

The transition from the deep-bath regime to the thin-film
regime can be expected as soon as a backflow will limit
the development of the boundary layer in drop 1. To first
approximation, the viscous boundary layer cannot grow
any further when 8p;, > D/4, as shown in Figure (8} The
Blasius boundary layer thickness is described by g, =
(nt/p)'/2, as shown in figure @3 Only for experiments
with a highly viscous inner drop (1; > 40 mPa s), the
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boundary layer reaches D/4 as shown in Figure EI: Indeed,
in that case we observe a flattening of the spreading curve
(Figure Ela) that is consistent with a = 1/2 as expected for
thin-film spreading®.
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Fig. 8 (Color online) Optical transmittance of ink (Brother LC-800)
in water solutions versus the penetration depth. 5% transmittance
was chosen as the experimental threshold, corresponding to a
penetration depth of 63um shown by the symbol (o).
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Fig. 9 (Color online) Temporal transition in spreading regimes; (a)
Spreading versus time for data with large 1, /1. Initial spreading
scales as L(t) ~ t* with a = 1. Later in time, a transition to o = 0.5
is visible. Both slopes are given by the dashed-dotted (1/2) and
dotted line (1); (b) Corresponding growth of relative boundary
layer 8p1./Dy. Transition to oo = 0.5 occurs around gz, /Do = Do /4,
suggesting thin film-limited spreading when the boundary layer
interacts with the toroidal vortices.
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