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SUPPORTING INFORMATION FOR “SHAPE-MORPHING ARCHITECTED SHEETS WITH
NON-PERIODIC CUT PATTERNS”

SPECIMEN FABRICATION

A Universal ILS9 120W laser cutter is used to create perforations. We mainly use 1.55 mm-thick natural rubber
sheets (McMaster-Carr, item no. 8633K71), but some 3.1 mm- and 0.75 mm-thick ones were also used (Grainger,
items no. 1XWES5 and 8611K18). For the 1.55 mm-thick specimens, the machine is set to cut at 35% power and 5%
speed, with an air assist flow rate of 100% to avoid burning the specimens. For the 3.1 mm-thick specimens, 45%
power and 2.3% speed are selected. For the 0.75 mm-thick specimens, 30% power and 5% speed are selected. Since
the laser beam has a finite cutting diameter, the hinges are not characterized by sharp corners but are de-facto beams
having a finite length. The tube specimens are closed using double-sided tape glued to some tiles. PETG sheets
(0.5 mm-thick) were perforated with the same laser cutter, with 3.0% power and 2.2% speed, and were also closed
into surfaces of revolution using double-sided tape.

ADDITIONAL INFORMATION ON THE TENSILE TESTS

Uniaxial tensile tests are conducted using an Instron ElectroPuls (Model E3000) system equipped with a 250 N load
cell at a constant deformation rate of 2mms~'. The tensile forces and displacements are measured with 1 mN and
5 pm accuracy, respectively, at an acquisition rate of 1 kHz. The force-displacement data obtained from the Instron
WaveMatrix software is converted to stress-stretch data using the original sample dimensions. The data obtained is
then subsampled to remove some of the noise (one every 10 measurements is kept). The response of the specimen in
Fig. 1(a) is replicated in Fig. S1, where the insets represent a few stages of the deformation of the specimen and show
the experimental setup. To accomodate lateral expansions and/or contractions of the specimens undergoing tensile
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FIG. S1. Response of a 18 x 18 tile, anisotropic sheet with §/l, = 1/8 and ¢/l ~ 0.26. The insets depict the experimental
setup and the response at three stretch values. (Scale bar, 12 mm)

loads, we employ a fixture where specimens are hung in a curtain-like fashion. We use 3D-printed parts (Formlabs
Form 2, clear resin) to connect horizontal steel rods to the Instron’s clamps; we then use paper clips as “hooks” to
hang the specimens (at 5 locations on each side). Upon pulling, the paper clips can slide on the steel rod; the friction
between these components will inevitably affect the response. Note that, due to the very small forces involved in
our experiments, we claim that the elasticity of paper clips and steel rods only minimally affects the response. From
Fig. S1, we see that the response is recorded only for values of stretches larger than ~ 1.08. This is due to the fact
that, when attached to our fixtures, some of the sheets we consider tend to deform due to their self weight. This self-
stretching happens only when specimens feature mechanism-like deformation in the pulling direction. For example,
in Fig. 1(a), the curve corresponding to horizontal stretching starts at 1.08, while the one for vertical stretching starts
at 0.
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From Fig. 1(a), we can see that the slopes of the elasticity-dominated portions of the experimental curves corre-
sponding to horizontal and vertical stretching are not identical. This is caused by the fact that the size of the vertical
and horizontal hinges in our anisotropic specimens are not identical. This is clearly visible from Fig. S2. In particular,
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FIG. S2. (a) Detail of one of the anisotropic architectures analyzed in this work (Scale bar, 6 mm). (b) and (c) Microscope
images (2.5X zoom) representing the details of vertical and horizontal hinges, respectively.

the laser cutting process causes vertical hinges to be thicker than the horizontal ones. This explains why in Fig. 1(a)
the continuous light gray curve is steeper than the elasticity-dominated portion of the continuous black curve.

In Fig. S8 we report the tensile response of the isotropic auxetic architecture displayed in Fig. 1(c) and Fig. S5(a).
The two continuous lines, dark and light, represent the experimental curves obtained by pulling the specimen along
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FIG. S3. Tensile response of a periodic sheet featuring the undeformed architecture in (a). Black lines represent the sheet’s

response to horizontal stretching and light gray lines to vertical stretching. Solid lines are experimental curves. The dashed line

represent the numerical response to both horizontal and vertical loading. The vertical dash-dot line shows the theoretically-

predicted value for the transition from a mechanism-dominated deformation to an elastic deformation. Insets (a-c) show

different stages of the sheet’s deformation (Scale bar, 6 mm); the red and blue lines highlight the diagonals of each tile in a
given row and column, respectively.

the horizontal and vertical directions, respectively. The two almost overlap, as expected, due to the isotropic nature
of the specimen’s response. The dashed line is obtained from FE simulations. The superimposed dash-dot curve
represents the analytical mechanism-to-elasticity transition.



S3
DETAILS ON THE FINITE ELEMENT MODEL

In this work, finite element simulations are carried out using Abaqus/Standard. The investigated sheets present
different lengthscales: the hinge in-plane width and length (~ 1mm), the length of a tile (~ 10mm), and the total
size of the sheet (~ 100 mm). Since the mechanical behavior of the sheets is, to a large extent, governed by the design
of the hinges, a sufficiently fine mesh is required to accurately capture the correct response. Another challenge stems
from the large nonlinearities involved and from the large distortions happening at large stretches. In order to efficiently
identify regions that are prone to out-of-plane bending, we conduct two-dimensional finite element simulations. In all
simulations, we resort to a plane strain assumption, accounting for the fact that the response is primarily determined
by the hinge dimensions, and the hinges’ in-plane width (~ 0.5mm) is smaller than their out-of-plane thickness
(~ 1.55mm). Throughout this work, we consider geometric nonlinearities and model the nonlinear material behavior
of natural rubber gum with a Neo-Hookean material model. This model is fit to the experimental response of a
natural rubber dogbone specimen to tensile loading. Fig. S4(a) shows a detail of the mesh at one of the hinges. We
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FIG. S4. Details of the FE model. (a) Detail of the mesh used for one of the hinges in the simulation of the anisotropic
specimen tensile test. (b) Detail of the stress map for the simulation in Fig. 3(a2).

check mesh convergence for one of the simulations used to obtain the numerical curves in Fig. 1(a). We change the
element size and monitor the stress values recorded for a given stretch along a given direction. The errors we obtain
for doubling the average element size are below 0.73%.

The results reported in Fig. 1(a) and Fig. S3 show that the numerics capture the features observed experimentally,
even though some discrepancies between experiments and numerics arise at large stretches. These discrepancies can
be attributed to several factors: 1) the inability of the Neo-Hookean model to capture the correct mechanical behavior
at large stretches; 2) the fact that the CAD models used for our numerical simulations do not account for the exact
hinge dimension that results from the laser cutting process; 3) the simulated loads might not be exactly identical to
the experimental ones.

The stress maps in Fig. 3 represent the out-of-plane stress o, = v(o, + 0,). The colormap is designed to give
relevance only to compressive stresses—those that are responsible for the onset of buckling. The stresses are not
averaged over subdomains. Thus, the red areas in Fig. S4(b) correspond to the compressive stress of the hinges. We
also observe that the compressive stresses partially percolate into the tiles. This is likely responsible for out-of-plane
buckling. From Fig. 3(b2-b3), we can see that the stress maps for the two loading configurations are almost identical.
For this reason, the stress maps do not contain enough information to determine the exact shape of the resulting
buckling patterns in complex scenarios, but give a useful guideline on where buckling is likely to occur in simple cases
like that depicted in Fig. 3(al-a2).
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KINEMATIC ANALYSIS

The sheets discussed in this work are designed to display mechanisms of inextensional deformation, i.e., low energy
modes of compliant mechanism-like deformation. In this Section, we consider the pin-jointed truss analogs of some of
our sheets, and resort to the matrix analysis detailed by Pellegrino & Calladine [49] and Hutchinson & Fleck [51] to
determine what these mechanisms are. This analysis consists of the following steps. First, we calculate the equilibrium
matrix A, that relates bar tensions t and joint forces f according to A -t = f, and the kinematic matrix B, relating
joint displacements d and bar elongations e according to B - d = e. Note that equilibrium imposes that B = AT
Then, we apply boundary conditions to suppress rigid body motions; in this case, we block the x and y displacements
of node (1,1), the node at the bottom left of the specimen, and the y displacement of node (2,1). Finally, we compute
the null space of B. If the system is properly constrained, each vector belonging to this null space represents a mode of
inextensional deformation. The results of this analysis for two cut patterns are shown in Fig. S5. First, we consider the
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FIG. S5. Kinematic analysis of periodic perforated sheets featuring tiles connected by thin hinges. (a) Isotropic sheet and (b)
detail. (c¢) Mechanism of inextensional deformation for the truss analog of (a), obtained by computing the null space of the
kinematic matrix. (d) Detail of one of the tiles of (a), indicating all the quantities necessary for the kinematic analysis. (e-h)
Same as (a-d), but for the architecture in (e). (Scale bar, 6 mm)

periodic architecture in Fig. S5(a-b), known for its auxeticity [4]. The matrix analysis of the pin-jointed truss analog
to this system predicts only one mechanism, shown in Fig. S5(c), and characterized by the tile rotations highlighted
by the black arrows. Note that this geometry features no states of self-stress. Thus, even though the analysis assumes
small deformations, the same mechanism should extend to large stretch regimes [51]. The periodic sheet in Fig. S5(e)
(same as the one shown in Fig. 1(a)) features a very similar mechanism of inextensional deformation, characterized by
the same relative rotations of the tiles, but with an equivalent positive Poisson’s ratio. The tensile tests in Fig. 1(a)
demonstrate that the rubber sheets, despite presenting non-idealities such as finite-sized hinges, deform according to
the corresponding mechanisms up to certain stretch values.

Knowing how these periodic sheets deform in plane, we resort to a kinematic model in order to quantify their
mechanism-like deformation. The unit cells for these periodic architectures consist of four adjacent tiles. It is
sufficient to consider a single tile to determine the whole system’s response. In Fig. S5(d,h) we show a single tile
from the sheets in Fig. S5(a,e), such that (i + j)/2 € Z, and we indicate all the useful geometric parameters. Here,
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(4, §) indicates a generic tile, with ¢ =1,..., Ny + 1, j=1,..., N, + 1 and N,, N, being the number of tiles along the
horizontal and vertical directions. Note that, if we consider a tile such that (i + j)/2 & Z, the following formulae will
only slightly vary. For the remainder of this section, we assume that we are dealing with periodic architectures; this
implies that wy(i,5) = wy(i + 1,7 + 1) = wy, and we(i + 1,j) = wg(4,j + 1) = wy. The red and blue lines indicate
the diagonals of each tile. Their lengths are

dy =2 +[l, — 2w, — 6 and d, = B+ e — 20, — 32 (S2)

Ideally, tiles can rotate until the diagonal lines corresponding to the selected stretch direction are straightened. With
this in mind, we can determine the maximum horizontal and vertical stretches for any periodic architecture designed
following our paradigm, as

S

d

AM = Zh o and AM =22 (S3)
ly Y ly

We can also use kinematics to derive formulae for the tangential stretches as functions of AM or )\7]!” . First, we

determine the angle a between d;, and the z-axis in the undeformed configuration, and 8 between d, and the y-axis,
as

o = arctan <ly2l¢) and [ = arctan (W) . (S4)
x Yy

Note that we define « to be positive counterclockwise and 5 to be positive clockwise. We also define vy =7/2 —a —§
as the angle between dj and d,. During mechanism-like deformation, 7 remains fixed since we assume the tiles
are rotating rigidly. On the other hand, the inclinations of d; and d, with respect to x and y change during the
deformation process. To determine the intermediate stages of the sheet’s deformation, we define o* and 5* as angles
varying from 0 to a and 0 to 3, respectively. Consider now the case of stretching along x. We can write

_dpcosa* _ dysin(y 4 a*)

Az () and Ay (a¥) (S5)
I 1,
From the first of the two equations, we obtain a*();) as
* )\m T
a*(\;) = arccos (S6)
dn
Substitution leads to the following formula for A, (Az):
dy Axls
Ay(Ag) = —sin {'y + arccos ( )} . (S7)
ly dn

This formula is used to determine the analytical curves in Fig. 1(f), representing the evolution of the tangential stretch
as a function of the applied one. Note that a similar formula can be obtained for A, (A,).

In our work, we fix the design parameters [, l,, and § most of the time, and vary w, and w,. Different combinations
of w, and wy allow to span a wide design space in terms of achievable deformations. To get a better idea of the available
design space, in Fig. S6, we report plots for the maximum stretch A}, and the related tangential stretch Ay (AM),
as a function of w, and w,. Note that the values in the colormaps are specific for I, = [, = 6mm and § = 1,/8.
We can see that choosing w, and w, allows to obtain a wide range of responses to stretching. Some significant
examples (A, B, C and D) are extracted from the design space. A, corresponding to w, = w, = 0, is characterized
by AM = X\,(AM) = 1.33; B, corresponding to w, = (I, — 9)/2 and w, = 0, is characterized by AM = 1.33 and
Ay(AM) = 0.75; C, corresponding to w, = (I, — 0)/2 and w, = (I, — §)/2, is kinematically undeformable albeit
featuring bulky tiles connected by thin hinges; D, corresponding to w, = I, — ¢ and w, = 0, does not behave like a
mechanism since the rigid tiles assumption does not hold for these specific parameters. From these examples, it is clear
that not all the configurations available in the design space allow to obtain the in-plane mechanism-like deformation
behavior we are interested in. Therefore, particular care is needed when choosing the design parameters; in light of
this, in this work, we limit ourselves to the ranges 0 < w, < (I; —§)/2 and 0 < w, < (I, —0)/2.

An example of non-periodic sheet is shown in Fig. S7(a). Non-periodicity leads to frustration and to the disap-
pearance of mechanisms of inextensional deformation. This is confirmed by the matrix analysis of the pin-jointed
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FIG. S6. Design space in terms of maximum stretches, A¥ and A, (A\Y), as a function of w, and w,, with I, = I, = 6 mm and
0 =l /8 fixed. Insets A-D represent specific examples extracted from the space.
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FIG. S7. Kinematic analysis of non-periodic perforated sheets featuring tiles connected by thin hinges. (a) Example of non-
periodic sheet. (b) Detail of the sheet in (a). (c) The null space of the kinematic matrix of the pin-jointed truss analog to (a)
contains no mechanism. (d) Detail of one of the tiles of the sheet in (a), with all the quantities necessary for the kinematic
analysis. (e-h) Same as (a-d), but for the architecture in (e). (Scale bar, 6 mm)

truss analog of the architecture in Fig. S7(a), that has no mechanisms. In these non-periodic cases, we can still use
kinematics to infer something about the local deformation of the sheet, even though it cannot be used to quantify
global deformations as it did in periodic scenarios. For this reason, in the main article, we sometime consider the
maximum stretches that a tile belonging to a non-periodic sheet can undergo. We interpret these stretches as measures
of a local ability to deform. The local ability to behave like a mechanism is what makes these systems buckle out of
plane. For a generic tile in a non-periodic scenario, whose bottom-left gridpoint (i, 7) is such that (i + j)/2 € Z, the
maximum stretches are calculated as in Eq. S3, with dj, and d, computed as

dhz\/zg+[zy—wy(i,j)—wy(i+1,j+1)_512 and dv:\/l§+[lm—wm(i,j+1)—wm(i~|—1,j)—5]2. (S8)
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CUT PATTERN GENERATION

Our cut patterns are generated and kinematically analyzed using custom MATLAB scripts. The first step of the
design process is to generate a grid of points. The grid can be non-Cartesian, as long as it can be mapped to a
rectangular one. At each grid point (i, j) with ¢ = 1,...,. N, +1 and j = 1,..., N, + 1 with N, and N, being the
number of tiles along the horizontal and vertical directions, we cut a diamond-shaped hole. For each diamond, we
define either its horizontal or vertical half-diagonal, i.e. w, or w,,. If (i+j)/2 € Z we define the diamond’s y-oriented
half-diagonal wy (¢, 7). Its z-dimension will be determined by the neighboring diamonds—I; — § — w, (i — 1, j) to the
left and I —d —wy(i + 1, ) to the right of the grid point. Otherwise, if (i + j)/2 ¢ Z, we define w, (4, j) while the
diamond’s y-dimension follows from the neighboring diamonds. This design paradigm guarantees geometric continuity
and that no perforations overlap, even in non-periodic architectures where we let w, and w, vary (smoothly or not)
from diamond to diamond. In the case of architectures designed to allow for plastic deformations, instead of defining
a diamond, we define an octahedron at each gridpoint.

The w;, wy, functions corresponding to all cut patterns shown throughout this manuscript are listed in the following.

e “Anisotropic” sheet.
Appearing in Fig. 1(a,d), Fig. S5(e), Fig. S4(a), Fig. S6B, Fig. S1, Fig. S2, Fig. S8.
Loading: Uniform horizontal or uniform vertical.
Material: Natural rubber gum of various thicknesses (1.55, 3.1 mm).
Parameters: N, = N, =18, 1, =1, = 6 mm, § = ,/8.
Hole size distribution (with ¢ =1,..., N, +1,j=1,...,N, +1):

wo(i,5) = (o — 6)/2, wy(i,5)=0.

e “Isotropic” sheet.
Appearing in Fig. 1(c), Fig. S5(a), Fig. S6A, Fig. S3.
Loading: Uniform horizontal or uniform vertical.
Material: Natural rubber gum, 1.55 mm thick.
Parameters: N, = N, =18, 1, =1, = 6mm, § =1,/8.
Hole size distribution (with ¢ =1,..., N, +1,j=1,..., N, +1):

e “Unstretchable” sheet.
Appearing in Fig. 1(e), Fig. S6C.
Loading: Uniform horizontal or uniform vertical.
Material: Natural rubber gum, 1.55 mm thick.
Parameters: N, = N, =18, 1, =1, = 6 mm, § = ,/8.
Hole size distribution (with ¢ =1,..., N, +1,j=1,...,N, +1):

wa (i) = (le = 0)/2, wy(i,5) = (ly = 6)/2 .

e “Graded” or “Dome” sheet.
Appearing in Fig. 2, Fig. S9, Fig. S10, Fig. S13(a).
Loading: Horizontal point loads at y = y™ /2 along the left and right boundaries.
Material: Natural rubber gum of various thicknesses (1.55, 3.1 and 0.75 mm).
Parameters: N, =36, N, =18, [, = 6 mm, [, = 2., 6 = 1,/8.
Hole size distribution (with ¢ =1,...,N, +1,j=1,..,N, +1):

(I —0) o =4
2 9 wy(zij): U2

wy(i,j) = c

jm
0s
Ny +2

e “T'wo bumps” sheet.
Appearing in Fig. 3(al-a2) and Fig. S4(b).
Loading: Point loads at the four corners, directed along +5° with respect to the horizontal.
Material: Natural rubber gum, 1.55 mm thick.
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Parameters: N, =37, N, =18,1, =1, = 6mm, 6 =[,/8.
Hole size distribution (with i =1,.., N, +1,j=1,..,N, + 1):

lpz—9 i

wm(lvj) = 9 wy(%]) = 92 COs N +2’
— i—(Ng T o Yy
L3 Jcos USQIRE ] if > (N, +1)/2+1

“Flower” sheet.

Appearing in Fig. 3(b1-b3).

Loading: Point loads at the four corners (directed at +45° with respect to the horizontal), or point loads at the
centerpoints of the four edges (and perpendicular to those edges).

Material: Natural rubber gum, 1.55 mm thick.

Parameters: N, =37, N, =37,1, =1, = 6mm, 6 =1[,/8.

Hole size distribution (with ¢ =1,..., N, +1,j=1,...,N, +1):

l,— 0
2

lp — 0 207 25
cos cos
2 N, +1 N, +1

wz(iaj): ’ wy(la]):
“C pattern” sheet.

Appearing in Fig. 3(cl-c2).

Loading: Point loads at few points along each boundary. All loads are perpendicular to the boundaries.
Material: Natural rubber gum, 1.55 mm thick.

Parameters: N, =30, N, =30, [, =1, = 6mm, 6 =1[,/8.

Hole size distribution: We did not use analytical functions of ¢ and j to create this pattern. The w, w, couples
we use are w, = (I; — 0)/2 and w, = (I, — J)/2 outside the C, and w, = 0, w,0 inside the C.

“Bulging tube”.

Appearing in Fig. 4(a).

Loading: Axial loads applied at the ends of the tube through 3D printed rings.
Material: Natural rubber gum, 1.55 mm thick.

Parameters: N, =18, N, =40, [, =, = 6mm, § ={,/8.

Hole size distribution (with ¢ =1,..., N, +1,j=1,..., N, + 1):

(ly =0)/2 if j<6|(j>15&j <20)[(j >26&j <31)[j>35

we(i,§) =0, wy(i,j) =
0 if (j>27&j<14)|(j>21&5<26)|(j>32&j < 34)

“Petal” sheet.

Appearing in Fig. 4(b).

Loading: Axial loads applied at the petal’s extremities.

Material: Natural rubber gum, 1.55 mm thick.

Parameters: We used w, = (I, —0)/2 and w, = (I, — ¢§)/2 along the petal’s boundaries and in those regions
that we want to remain stiff; we used w, = 0, w, = 0 elsewhere.

“Plastic vase”.

Appearing in Fig. 4(c).

Loading: Manual forming.

Material: 0.5 mm-thick PETG sheet.

Parameters: N, = 36, N, = 18, [, = 6 mm, [, varies linearly from 6 mm at the bottom of the specimen to
18 mm at the top, 6 =1, /10, h =1,/8.

Hole size distribution (with i =1,...,N, +1,j=1,...,N, +1):

(lo — 5) RSN P R B
2 ) wy(lhj)_ 2 2

wy(i,j) =

Jm
(¢0)]
2N, + 4

“No mechanism” sheet.
Appearing in Fig. S7(a).
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Loading: None.

Material: Natural rubber gum, 1.55 mm thick.

Parameters: N, =18, N, =18, 1, =1, = 6mm, § =,/8.
Hole size distribution (with ¢ =1,..., N, +1,j=1,...,N, +1):

T
cos
N, +2

.o lm_(s
wm(laj): 2

‘ ) wy(laj): 2

e “Plastic dome”.
Appearing in Fig. S13(b).
Loading: Horizontal point loads at y = y™ /2 along the left and right boundaries.
Material: 0.5 mm-thick PETG sheet.
Parameters: N, =36, N, =18, [, = 6mm, I, = 2l,, § =1,/10, h =1,/8.
Hole size distribution (with ¢ =1,..., N, +1,j=1,..,N, +1):

(lm - 5)
2 )

o ly—06
w’y(laj): y2

we(1,5) = ¢

OS ij
N, +2
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INFLUENCE OF THE DESIGN PARAMETERS ON THE IN-PLANE DEFORMATION OF PERIODIC
SPECIMENS

To analyze the influence of the design parameters on the in-plane response of perforated sheets, we consider the
cut pattern discussed in Fig. 1 as reference case. The results of this analysis are reported in Fig. S8. In Fig. S8(a),

a b
t/l ~0.26, | (@) ‘ ©
— &/l =1/4 5/ =1/8,
6/ =1/6 — t/l, ~0.26
— 6§/l =1/8 — t/l ~ 053
_20f — ¢/k=1/10 _ 20t ;
© _ @
< 0/l =1/12 g
10 10t ]
0 0 i ‘ ‘
1 1.1 1.2 1.3 1.4 1 1.1 1.2 1.3
Stretch, A Stretch, \

FIG. S8. (a) Dependence of the mechanism-like response on the in-plane hinge width, §. We keep ¢/l ~ 0.26 constant, and
we vary 0/l;. The dashed vertical lines represent the mechanism-to-elasticity transitions for all §/I, cases. (b) Dependence of

the mechanism-like response on the sheet’s thickness, ¢, with §/l, = 1/8 constant.

we show the dependence of the horizontal stretch response on the in-plane width of the hinges §, for a constant
out-of-plane thickness of the sheet ¢/l ~ 0.26 (corresponding to ¢ = 1.55mm). If ¢ is increased, the sheet tends
to lose its mechanism-like behavior. This is evident from the fact that the red and yellow continuous curves do not
display a clear mechanism-to-elasticity transition. On the other hand, this transition is more pronounced for small
0. Note that the dash-dot lines represent the mechanism-to-elasticity transitions for each ¢ value. They are different
from each other since the lengths of the tile diagonals d;, and d, differ when we change 4.

In Fig. S8(b), we superimpose the responses of two specimens featuring the same architecture with 6/l, = 1/8, and
different sheet thicknesses, t. We observe that the two responses overlap in the mechanism region, and in part of the
elasticity-dominated regime. The curves deviate for stretches larger than 1.35.
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INFLUENCE OF THE DESIGN PARAMETERS ON THE OUT-OF-PLANE DEFORMATION OF
NON-PERIODIC SHEETS

Fig. S9 and Fig. S10 provide information on the influence of § and ¢ on the doming of an elastic sheet. This
information is also reported in a concise way in Fig. 2(c,d). Note that these shapes have been obtained by 1) pulling
the specimen by hand up to a desired stretch value, 2) nailing it to a wooden board, 3) pinching the center of the
specimen to trigger out-of-plane buckling. This guarantees that all the images in Fig. S9 and Fig. S10 are obtained
with consistent loading conditions. It also ensures that, if two stable solutions exist for a certain stretch value, we
jump on the one that corresponds to out-of-plane deformation. For these reasons, the critical buckling stretches
observed in experiments made with tensile test apparati are bound to differ from the results shown here.

t/l ~0.13 t/l ~0.26 t/l ~ 053

FIG. S9. Out-of-plane deformation of three graded sheets with different thicknesses, for different stretches. Rows of images
correspond to specific stretch values. Columns correspond to different thicknesses of the sheets. In each image, h indicates the
height of the highest point of the 3D shape with respect to its undeformed position. (Scale bar, 12 mm)

In addition to the comments in the main text, we here discuss the influence of 6/t. When ¢ is decreased below
the in-plane hinge width §, the out-of-plane (rather than the in-plane) bending of the hinges becomes favorable:
this translates into the formation of localized crease patterns [36, 38]. In our case, this behavior introduces local
undulations superimposed to the global three-dimensional profile and concentrated near the loading sites. This is
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shown in Fig. S10(c).

t/h ~0.13

FIG. S10. Out-of-plane deformation of three graded sheets with different thicknesses, for the same stretch value. (a) Corresponds
to t/lz ~ 0.13, (b) to t/l. ~ 0.26 and (c) to t/ly ~ 0.53. The left images represent lateral views of the buckled shapes. The
details highlight the local deformations of hinges and tiles near the load application points. (Scale bar, 12 mm)
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LOCALIZED VS. DISTRIBUTED LOADS

All non-periodic specimens analyzed in our article have been loaded via localized boundary excitations. In this
Section, we discuss the response of some of those specimens to distributed boundary loads. In Fig. S11(a), we can see
the unstretched graded specimen (introduced in Fig. 2), and its deformed configuration when subjected to a uniform
stretch A = 1.23. Clearly, distributed loads do not produce any out-of-plane buckling. This is not surprising, since this

A=1 A=1.23

(@)

232

A=1 A =117

(b)

FIG. S11. (a) Deformation of the graded specimen of Fig. 2, subjected to a distributed horizontal stretch. (b) Deformation of
the specimen introduced in Fig. 3al-a2, subjected to a uniform horizontal stretch. The direction and points of application of
the excitation are marked with orange arrows.

loading scenario produces a uniform stretch of each row of identical unit cells, with the central rows featuring lower
stresses than the top and bottom boundary regions. In this case, no significant compressive stresses are triggered
and no geometric frustration arises. In Fig. S11(b), we show the response of the specimen with two auxetic islands
(introduced in Fig. 3(al-a2) to a similar uniform load. In this case, we stretch the specimen to A = 1.17. We can
see that out-of-plane buckling occurs and that the two auxetic regions pop-up, just like in the point-loading scenario.
This can be ascribed to the fact that buckling-inducing compressive stresses can still arise due to uniform loading,
owing to the presence of auxetic islands surrounded by non-auxetic regions. We also notice that the buckled pattern
obtained with distributed loads features bumps that are more elongated in the horizontal direction; this further proves
that the loading configuration can be leveraged to control the shape of the buckled features.
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ALTERNATIVE DESIGN FOR STIFF MATERIALS AND PLASTIC DEFORMATIONS

In order to fabricate sheets out of stiff materials, and to have our sheets retain their 3D shape upon load removal,
we slightly modify our cut pattern design. To achieve shape retention, we leverage plastic deformations that occur
at the hinges when elastic-plastic materials are used. If the same hinge geometry used for soft materials were used
for stiff ones, both periodic and non-periodic specimens would shatter at the hinges when pulled open. This is why
we modify our hinge design. To do so, we follow the guidelines offered by Shang, Pasini et al. [54]. This entails
defining octahedra-shaped cuts instead of diamond-shaped ones at each grid point. This new design is illustrated in
Fig. S12(b). It represents the compliant mechanism version of the architecture in Fig. S12(a). As a result, the hinges

FIG. S12. An alternative design startegy for stiff materials. (a) Detail of an architecture obtained with our initial design strat-
egy. (b) Compliant beam version of the same architecture, where we have introduced the additional parameter h, representing
the in-plane hinge length.

produced with the new design have a finite length h. Note that the overall response of this alternate geometry is
similar to the original one. The requirement is for the hinge length i to be much smaller than the distances between
gridpoints, [, and [,,.

In Fig. S13, we compare the response of the natural rubber sheet also shown in Fig. 3(al), to the response of a
sheet made of PETG, featuring a similar cut pattern albeit modified by selecting § = [,/10 and introducing h = I, /8.
Upon load removal, the PETG sheet partially retains its deformed, three-dimensional shape, while the rubber one
does not.

WS
N
NN

N
N \
NN
NININRR

W

N
VL

N BV

.
AR -+
SN AN
BN MRTNNNNY
\ R \ "\ AN
AR LAY
AN RRRARR AW AR AN
AR AR AW
N BRI
AN MW

FIG. S13. (a) Three stages of the deformation of the natural rubber specimen studied in Fig. 3(a). (b) Deformation of a
similar sheet, made of PETG and featuring the design variation shown in Fig. S12(b). (Scale bar, 12 mm)



