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Supplemental Table 1:

Hertz Model[1]:
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Sneddon model[2]:
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Sphero-conical model[4]:
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Supplementary Note 1: Approximation of integral transform method

We consider a system of two linearly elastic springs (k1, k2) in series undergoing 

compression of magnitude d on k1 and d' on k2 and with a fixed support on the k2. Balancing the 

forces gives
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𝑘1𝑑

𝑘1 + 𝑘2
(S1)

and the total force of compression on the system is
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Letting  represent the homogeneous case of k1=k2 and normalizing Eq. S2 gives𝐹0 = 𝑘1𝑑/2
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which may be rewritten as a hyperbolic tangent function with minor transformations of variables 

and constants. We find that this simple 1D model gives functionally similar results for scaling 

behavior of k1/k2 to E1/E2 in the full axisymmetric model of Dhaliwal and Rau, however the 

upper bounds of the model (when E1/E2 ~ 0) and the steepness of the sigmoidal transition differ 

depending on the characteristic length scale a0/h of the indentation.

Therefore, in the case of an axisymmetric indentation into an axisymmetric elastic 

material, we phenomenologically modify Eq. S3 to include effects of the length scale in a power-

law fashion as
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Here, the functions A and B represent the steepness and the upper bounds of the sigmoidal 

transition, respectively, and both depend on the indentation length scale a0/h. F/F0=1 for E1=E2 

and B=0 when a0/h=0 resulting in F/F0=1, thus the conditions of the homogeneous case are 

satisfied.

Fits for A and B were performed for all values of a0/h ranging from 0.01 to 1.00. The 

weights of the least squares regression is related to the inverse of the value of F/F0 and is higher 

for lower values of a0/h. The force correction was calculated for a parabolic (Hertz model) 

indenter with radius for six orders of magnitude of E1/E2 and a0/h up to 1.00 in increments of 

0.01 (Fig. S2). For a given a0/h, the force correction is calculated for all E1/E2. A and B were 

empirically fit in a least-squares manner to
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In this definition, the power law A cannot be less than zero nor greater than one, therefore the 

additional constraint of the minimum function is added. Fitting for the constants while assuming 

ν1 = ν2 = 0.5 gives
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It should be noted that the coefficients given in Eq. (S7-S8) do not represent corrective 

orders in the approximation as they do in other works[5-7], but rather they are determined simply 

by performing a least-squares regression over A and B.



Fig. S1: Effect of the Poisson's ratio on indentations into layered systems using a parabolic 

(Hertz model) indenter. For all cases, ν = ν1 = ν2.



Fig. S2: Comparison of numeric solving methods for ϕ to determine F (Eq. 1-9) between 

Dhaliwal and Rau[8] (DR) and Atkinson and Shampine[9] (AS). (A) In the case of a stiff 

substrate and soft layer, black is AS numeric method and red, green, blue, and cyan represent DR 

method for different orders (zeroth, first, second, and third, respectively). (B) In the case of a soft 

substrate and stiff layer, black is AS numeric method and red, green, blue, cyan, and magenta 

represent DR method for different orders (zeroth, first, second, and third, respectively). 

Parameters are E1=1 kPa, h=4 μm, R=1 μm, and (A) E2=50 kPa and (B) E2=0.2 kPa.



Fig. S3: Results of the numeric model. Log-log corrections to the force F/F0 as a function of 

elasticity mismatch E1/E2 are shown for (A) a0/h=0.10, (B) a0/h=0.25, and (C) a0/h=0.50 for 

Hertz model (blue), Sneddon model (green), hyperbolic (red), and sphero-conical (black) 

indenter geometries.



Fig. S4: Additional details of fitting to determine Eq. (14-15). (A) Values calculated for A as a 

function of a0/h (black circles) and the corresponding fit to Eq. (S2) (blue lines). (B) Values 

calculated for B as a function of a0/h (black circles) and the corresponding fit (blue lines). (C) 

F/F0 as a function of a0/h (larger values) for various values of E1/E2 (blue E1/E2=1, red 10, black 

100, green 0.1, and magenta 0.01). Open markers indicate the solution to Eq. (1-9) while solid 

lines indicate the solution to Eq. (16).





Fig. S5: Surface displacement profile of indentations into two-layered materials. Squares show 

results from finite element analysis and solid lines indicate theory Eq. (10). For all simulations, 

R=5 μm, δ=800 nm, E1=100 kPa, h=4 μm, ν1=v2=0.49, and E2=10 MPa, 1 MPa, 100 kPa, 10 kPa, 

and 1 kPa for red, magenta, teal, blue, and yellow, respectively. The black curve indicates the 

shape of the indenting probe.



Fig. S6: Errors in deconvoluting Young's modulus from finite element simulations. (A) Numeric 

method solving Eq. (1-9), and (B) approximate method using Eq. (14). Points not shown if the 

absolute error is greater than 50%.



Fig. S7: Representative force-indentation curve on a thick layer of 40:1 PDMS. Blue shows the 

extension curve, red shows the retraction curve.
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