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I. MODEL RING MELT CONFORMATIONS
DERIVED FROM REGULAR FRACTAL

SPACE-FILLING CURVES

Moore rings – The Moore ring is the closed version
of the Hilbert curve and both can be obtained by a re-
cursive numerical algorithm [4]. Bead-spring Moore rings
are constructed by simply arranging the monomers along
the contour line of the curve. With the additional con-
straint of monomer density ρ = 0.1/σ3, admissible con-
tour lengths Zr for Moore rings occupy a cubic box of
volume, V , given by:

V =
63/2

20
d3T Zr . (1)

Zr is thus a multiple of 8 of Z0 ≈ 64(ρK lK)−1/2

Le
≈ 5,

which leads to Zr = Lr/Le = 5, 38, 307 (see Table SI and
Fig. S1).
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Hilbert ribbons – As a hybrid between the frac-
tal and the double-folded building strategies, we con-
sidered compact ribbon conformations where the ribbon
axis follows a Hilbert curve instead of a random walk.
Hilbert ribbons are built according to a procedure analo-
gous to the construction of Klein folded rings, where now
the contour length consists of a Hilbert curve. Anal-
ogously to Moore rings, Hilbert ribbons occupy a vol-
ume V given by Eq. (1), where Zr is a multiple of 8 of

Z0 ≈ 128(ρK lK/2)
−1/2

Le
≈ 14. This leads to Zr = Lr/Le =

14, 116, 926 (see Table SI).
Moore rings and Hilbert ribbons have been also used

as starting conformations for MD computer simulations.
The total number, M , of chains considered is summarized
in Table SI.

II. PROPERTIES OF RING MELTS
CONSTRUCTED FROM DIFFERENT POLYMER

MODELS: LARGE SCALE STRUCTURE

In the main text, we have focused on the ring melts
derived from lattice tree melts or via hierarchical crum-
pling. To appreciate the success of these methods, it is
useful to compare them to other plausible, but less re-
fined models for crumpled rings, which we have studied
in Ref. [3]. Below, we provide more details and analyze
the same observables (〈R2(L)〉, CN (L), pc(L),Ω(L)) as in
the main text.

Klein ribbons – For a ribbon axis with the same
Kuhn length as in the fiber model, the conformational
statistics of tightly wrapped rings turns out to be in al-
most perfect agreement with the corresponding Gaussian
rings [3]: in particular, the mean-square internal dis-
tances obtained for the constructed Klein ribbons (dot-
ted lines in Fig. S2a) are equivalent to the Gaussian ring

law, 〈R2(L)〉 = lKL
(

1− L
Lr

)
, where the average is taken

over all monomers of a ribbon with vanishing diameter
and an axis with the same stiffness / Kuhn length as the
chains. As a consequence, there is also perfect agree-
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Fig. S 1: Moore curves. From left to right are shown the first (Zr = 4.8), second (Zr = 38.4) and third (Zr = 307.2) generation
of a single ring polymer.

Initial state Zr N ×M ×#RUNS τtot[τLJ ] τtot/τeq

Klein ribbon (I) 4.8 190× 1× 1∗ 1.2× 107 2× 103

Klein ribbon (II) 4.8 194× 1× (& 100)∗ 1.2× 107 2× 103

Moore ring 4.8 192× 8× 1 1.2× 108 2× 104

Ideal LT ribbon 5.0 200× 32× 1 1.2× 107 2× 103

Klein ribbon (I) 14.7 589× 1× 1∗ 1.2× 108 1.5× 103

Klein ribbon (II) 14.5 582× 1× (& 100)∗ 1.2× 107 1.5× 102

Hilbert ribbon 14.3 570× 8× 1 1.2× 108 1.5× 103

Ideal LT ribbon 15.0 600× 8× 1 1.2× 108 1.5× 103

Klein ribbon (I) 34.7 1388× 1× 1∗ 1.2× 108 1× 102

Klein ribbon (II) 34.9 1396× 1× (& 100)∗ 1.2× 107 1× 101

Moore ring 38.4 1536× 8× 1 2.4× 108 2× 102

Ideal LT ribbon 37.6 1502× 16× 1 1.2× 108 1× 102

Klein ribbon (I) 110.8 4433× 1× 1∗ 1.2× 109 O(10)
Klein ribbon (II) 110.2 4409× 1× (& 100)∗ 1.2× 107 O(0.1)
Hilbert ribbon 115.5 4620× 8× 1 6.0× 108 O(5)
Ideal LT ribbon 115.1 4605× 8× 1 1.2× 108 O(1)

Moore ring 307.2 12288× 8× 1 1.2× 108 –

Hilbert ribbon 925.6 37024× 1× 1 1.2× 108 –

Table S I: Details of the ring systems studied by Molecular
Dynamics computer simulations (Sec. IIA in the main text).
Initial states correspond to (a) the lattice models described in
Sec. IID in the main text and (b) the fractal models described
in Sec. I here. Zr: number of entanglements per single ring;
N : number of Lennard-Jones monomers per single ring; M :
number of rings per each system; #RUNS: total number of
independent MD runs; τtot: time-length of the single MD
trajectory, expressed in elementary Lennard-Jones (LJ) [1,
2] time steps (τLJ); τtot/τeq: total number of independent
MD configurations, where τeq is the diffusion equilibration
time corresponding to chain motion beyond the polymer mean
gyration radius. ∗There are two sets of MD simulations for
Klein ribbons. Set I includes data from Ref. [3] and is used for
Figs. 2, 4 and 5 in the main text and Figs. S2 and S6 here. Set
II includes data consisting of, at least, #RUNS independent
simulations of one-ring systems and is used for Fig. S8 here.

ment for quantities which can be derived from 〈R2(L)〉
such as the gyration radius [3], or the bond-vector ori-
entation correlation function, Eq. (4) in the main text,
which decays on the Kuhn scale and drops to −lK/L for
large distances as a consequence of the closure constraint
(Fig. S2b). The difference between the random walk rib-
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Fig. S 2: Comparison of the conformational statistics for MD-
equilibrated rings (symbols) and Klein ribbons (lines: dotted,
average at t = 0; solid, average at t = τe). (a) 〈R2(L)〉,
Mean-square internal distances. (b) CN (L): Bond-vector ori-
entation correlation function. (c) pc(L): Mean contact proba-
bility between monomers for contact distance ≤ 2σ. (d) Ω(L):
Overlap parameter. Data extend up to 1/4 of the correspond-
ing rings contour lengths. The same observables are used in
Fig. 3 in the main text and Figs. S3-S5.

bons and Gaussian rings only becomes apparent from the
asymmetry ratios of the gyration tensor [3]: by construc-
tion, for large Klein ribbons we find the typical values
for ordinary random walks ≈ 11.7 : 2.7 : 1.0 [5], at odds
with the measured ≈ 6.1 : 2.3 : 1.0 for Gaussian rings [6].

By construction, the linear ribbon model predicts
the L1/2 growth of the overlap parameter, Ω(L) ≡
ρK lK
L 〈R

2(L)〉3/2, which is characteristic for linear chains
(Fig. S2d). For ring sizes up to a few entanglement
lengths, long (up to ≈ 106τe, see Table SI) MD equilibra-
tion runs of Klein folded initial states hardly affect the
conformational statistics. However, larger rings undergo
substantial shrinking (Fig. S2a) with correspondingly in-
creased contact probabilities (Fig. S2c), develop anti-
correlations in the bond-vector orientation correlation
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Fig. S 3: Comparison of the conformational statistics for
MD-equilibrated rings (symbols) and space-filling Moore rings
(lines: dotted, average at t = 0; dashed, average at t = 0.1τe;
solid, average at t = τe).

function on the entanglement scale (Fig. S2b), and lower
the overlap parameter (symbols in Fig. S2d) slightly be-
low the entanglement threshold, Ω ≡ 20 [7–9].

Moore rings – In melts derived from standard space-
filling curves neighboring rings do not overlap at all. The
lines in Fig. S3 represent the conformational properties
of Moore rings. Panel (a) and panel (c) (whose curves
were averaged after a short MD run up to τe) show
that 〈R2(L)〉 ∼ L2/3 and pc(L) ∼ L−4/3 in agreement
with [10]. The regular structure manifests itself in an
oscillating bond-vector orientation correlation function
(Fig. S3b, curves averaged after a short MD run up to
τe/10, sufficient to equilibrate the chain statistics below
the entanglement scale). Interestingly, the overlap pa-
rameter of ≈ 2 [11] never approaches the entanglement
threshold of Ω = 20 (Fig. S3d).

We have also performed long (up to ≈ 105τe, see
Table SI) MD simulations to equilibrate systems with
Zr = 5 and Zr = 38 (symbols in Fig. S3). In our fi-
nal conformations the oscillations in the bonds orienta-
tions are again replaced by anti-correlations on the en-
tanglement scale. In particular, the Moore conformations
undergo substantial swelling, increasing the overlap pa-
rameter on large length scales close to the entanglement
threshold. We remark, that the relaxation of the scaling
exponent for contact probabilities pc(L) which increases
from ≈ −4/3 to ≈ −1 (Fig. S3c) is another signature
of the important difference between (a) polymer confine-
ment in the presence of surrounding chains which forces
the ring to branch and assume rugged surfaces and (b)
polymer confinement inside smooth environments which
was originally [10] indicated as a possible recipe to as-
semble crumpled globules: as later demonstrated in [12],
the latter strategy fails producing stable polymer confor-
mations as the scaling exponent is found to decrease from
≈ −4/3 to ≈ −1.5, i.e. close to the value expected for
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Fig. S 4: Comparison of the conformational statistics for MD-
equilibrated rings (symbols) and space-filling Hilbert ribbons
(lines: dotted, average at t = 0; dashed, average at t = 0.1τe;
solid, average at t = τe).
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Fig. S 5: Comparison of the conformational statistics for
MD-equilibrated rings (symbols) and ideal lattice tree ribbons
(solid lines, average at t = τe). Notice, that the large-scale de-
cay of contact probabilities, pc(L) ∼ L−0.97±0.01 (panel (c)),
is different from the observed behavior of rings obtained from
the interacting lattice tree model (see panel (c1) of Fig. 3 in
the main text). Note also the slow divergence of the overlap
parameter with chain length (panel (d)).

an equilibrium globule.

Hilbert ribbons – The Hilbert ribbons have a similar
conformational statistics as Moore rings (Fig. S4). The
typical size grows like 〈R2(L)〉 ∼ L2/3 as long as L� Lr.
The conformations are locally less crumpled. The over-
lap parameter (Fig. S4d) of ≈ 5 is nearly twice as large
as for Moore rings [13], but it stays nevertheless well be-
low the entanglement threshold. Interestingly, contact
probabilities decay like pc(L) ∼ L−1 (Fig. S4c) in bet-
ter agreement with the experimental [10] and simulation
data [14]. For Zr = 14 and Zr = 116 we have prepared
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Fig. S 6: Time behaviors of the average square gyration ra-
dius (〈R2

g(t)〉, top) and the average square magnetic radius
(〈R2

m(t)〉, bottom) for solutions of ring polymers with differ-
ent initial conformations: (1) Klein double-folded rings (red),
(2) Hilbert double-folded rings (green) and (3) double-folded
rings on ideal branched primitive paths (blue). Systems (2)
and (3) are made of 8 rings, while system (1) is made of only
one chain. The inset shows the ratio 〈R2

g(t)〉/〈R2
m(t)〉. Error

bars are for the standard deviation of the mean.

(see Table SI) equilibrated melt conformations starting
from M = 8 chains with identical Hilbert ribbon confor-
mations (symbols in Fig. S4). Again, the oscillations in
the bonds orientations are replaced by anti-correlations
on the entanglement scale with the rings swelling close
to the entanglement threshold.

Branched ribbon conformations from the ideal
lattice tree model – Results for rings derived from
melts of ideal lattice trees are illustrated in Fig. S5 (solid
lines). We note the characteristic anti-correlations of
bonds orientations (panel (b)) on the entanglement scale
and the overlap parameter just below the entanglement
threshold (panel (d)). Again, we have constructed topo-
logically correct melt states by assembling single ring con-
formations at the correct monomer density into a sim-
ulation box with periodic boundary conditions. Start-

10
0

10
1

Ω
(L

)

a

10
0

10
1

10
-1

10
0

10
1

10
2

Ω
(L

)

L/Le

b

Fig. S 7: MD-equilibration of overlap parameter, Ω(L), shows
the clear progression from small to large contour-length sep-
arations. Symbols of different colors correspond to square in-
ternal distances averaged over exponentially larger and larger
time windows: black symbols show data corresponding to the
initial configuration; symbols from red to orange represent
MD data averaged over 10i < t/τe < 10i+1, with i from 0 to
4 respectively (there are no data for i = 4 in panel (b)). The
two panels show: (a) the largest (Zr = 926) Hilbert ribbon
(see Table SI here), (b) the linear polymer chains the size the
human chromosomes (Z = 810) studied in [15]. The brown
solid line is the prediction of the interacting lattice tree model.

ing from these, we have run MD simulations for as long
as in the previous cases (i.e. ≈ 105τe, see Table SI).
Results for MD simulations are summarized as symbols
in Fig. S5. We notice that, while small rings (up to
Zr = 38, blue symbols) are well described by the ideal
lattice tree model, the cyan system (Zr = 115) starts
showing some swelling, especially evident in the overlap
parameter (panel (d)).

III. BRUTE-FORCE MOLECULAR DYNAMICS
(MD) EQUILIBRATION OF “GOLD STANDARD”

REFERENCE DATA

Table SI lists the specifications of the ring melts, which
we have studied [3] using Molecular Dynamics simula-
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Fig. S 8: Equilibration of gyration (top row) and magnetic (bottom row) radii in Molecular Dynamics simulations of the fiber
model. Lines with different colors correspond to the theoretically expected gyration radii for the different types of structures.
Symbols refer to simulation data for ensembles derived from corresponding initial states. Not all systems were run to the
maximal time (see Table SI here), explaining the different number of symbols used in the different panels.

tions.
Fig. S6 illustrates the time evolution for the average

gyration and magnetic radii (〈R2
g(t)〉 and 〈R2

m(t)〉, top
and bottom panel respectively) for our largest ring poly-
mers with Zr ≈ 100 and different initial conformations
(see Sec. IID in the main text, Sec. I here and Table SI).
As expected, after a long transient the memory of the ini-
tial conformation is lost and both observables fluctuate
around their corresponding equilibrium values with ra-

tio 〈R2
g(t)〉/〈R2

m(t)〉 ≈ 2.1 (see inset of bottom panel).
As in the case of relaxation of long, untangled linear
chains [15], rings equilibration proceeds from small to
large scales (Fig. S7). As illustrated by Fig. S8, the mag-
netic and the gyration radius equilibrate on similar time
scales. In particular, this implies that the lattice tree
melt derived ring melts are not equilibrated and would
need to be brute-force equilibrated like any other topo-
logically correct initial state.
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