Three-dimensional nitrogen-doped porous carbon anchored CeO$_2$ quantum dots as an efficient catalyst for formaldehyde oxidation

Dong Luo,ab Bingbing Chen,c‡ Xingyun Li,*ab Zaojin Liu,ab Xiaowei Liu,ab Chuan Shi*c and Xiu Song Zhaoabd

aInstitute of Materials for Energy and Environment, Qingdao University, Qingdao, 266071, China
bCollege of Materials Science and Engineering, Qingdao University, Qingdao, 266071, China
cState Key Laboratory of Fine Chemicals, School of Chemistry, Laboratory of Plasma Physical Chemistry, Dalian University of Technology, Dalian 116024, China
dSchool of Chemical Engineering, University of Queensland, St Lucia Campus, Brisbane, QLD 4074, Australia

‡ The authors contribute equally to this work.

*Corresponding author: xingyun_2008@sina.con, chuanshi@dlut.edu.cn
Fig. S1. SEM image of PMMA spheres.

Fig. S2. a) TEM, b) HRTEM images of CeO$_2$@CN, TEM image of c) CeO$_2$/CN and d) bulk CeO$_2$.
Fig. S3. a) N_2 adsorption-desorption isotherm and b) DFT pore size distribution of CeO$_2$@CN.

Fig. S4. a) N_2 adsorption-desorption isotherm and b) DFT pore size distribution of bulk CeO$_2$.

Fig. S5. TG curve of CeO$_2$@CN synthesized with different mass ratio of ceric ammonium nitrate to dopamine calcined at 650 °C and Ar atmosphere.
Fig. S6. Deconvolution of Ce 3d XPS spectrum of 3D-CeO$_2$@CN and bulk CeO$_2$.

Fig. S7. HCHO oxidation conversion values as function of temperature at 100000 h$^{-1}$ over 3D-CeO$_2$@CN with a) different calcination temperature at ceric ammonium nitrate to dopamine of 20/1, b) with different ratio of ceric ammonium nitrate to dopamine at calcination temperature of 650 °C.
Fig. S8. HCHO oxidation conversion values as function of temperature over CeO$_2$@CN, CeO$_2$/CN and CeO$_2$ at 100000 h$^{-1}$.

![Graph showing HCHO conversion vs temperature with different catalysts](image-url)