Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2018

Supporting Information

Three-dimensional nitrogen-doped porous carbon anchored CeO₂

quantum dots as an efficient catalyst for formaldehyde oxidation

Dong Luo,^{ab‡} Bingbing Chen,^{c‡} Xingyun Li,^{*ab} Zaojin Liu,^{ab} Xiaowei Liu,^{ab} Chuan Shi*^c and Xiu Song Zhao^{abd} ^aInstitute of Materials for Energy and Environment, Qingdao University, Qingdao, 266071, China ^bCollege of Materials Science and Engineering, Qingdao University, Qingdao, 266071, China ^cState Key Laboratory of Fine Chemicals, School of Chemistry, Laboratory of Plasma Physical Chemistry, Dalian University of Technology, Dalian 116024, China ^dSchool of Chemical Engineering, University of Queensland, St Lucia Campus, Brisbane, QLD 4074, Australia

⁺The authors contribute equally to this work.

*Corresponding

author:

xingyun_2008@sina.con,

chuanshi@dlut.edu.cn

Fig. S1. SEM image of PMMA spheres.

Fig. S2. a) TEM, b) HRTEM images of CeO₂@CN, TEM image of c) CeO₂/CN and d) bulk CeO₂.

Fig. S3. a) N_2 adsorption-desorption isotherm and b) DFT pore size distribution of $CeO_2@CN$.

Fig. S4. a) N₂ adsorption-desorption isotherm and b) DFT pore size distribution of bulk CeO₂.

Fig. S5. TG curve of CeO₂@CN synthesized with different mass ratio of ceric ammonium nitrate to dopamine calcined at 650 °C and Ar atmosphere.

Fig. S6. Deconvolution of Ce 3d XPS spectrum of 3D-CeO₂@CN and bulk CeO₂.

Fig. S7. HCHO oxidation conversion values as function of temperature at 100000 h⁻¹ over 3D-CeO₂@CN with a) different calcination temperature at ceric ammonium nitrate to dopamine of 20/1, b) with different ratio of ceric ammonium nitrate to dopamine at calcination temperature of 650 °C.

Fig. S8. HCHO oxidation conversion values as function of temperature over CeO₂@CN, CeO₂/CN and CeO₂ at 100000 h⁻¹.