Supporting Information

Fast Li+ Diffusion in Interlayer-Expanded Vanadium Disulfide Nanosheets for Li+/Mg2+ Hybrid-Ion Batteries

Yuan Menga, Yingying Zhaoa, Dashuai Wanga, Di Yanga, Yu Gaoa, Ruqian Liana, Gang Chena,b, Yingjin Weia,*

aKey Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun 130012, P. R. China.

bState Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, P. R. China.

*Corresponding author email: yjwei@jlu.edu.cn (Y. Wei); Tel: 86-431-85155126.
Fig. S1 Schematic of the crystal structure of (a) hexagonal VS$_2$, and (b) trigonal VS$_2$.

Fig. S2 V and S elemental mappings of the VS$_2$ nanosheets.
Fig. S3 Cycling performance of the VS$_2$ nanosheets in MRB at the current density of 50 mA·g$^{-1}$.

Fig. S4 CV curve of a three-electrode cell, using the APC+LiCl/THF hybrid electrolyte, stainless steel foil as the working electrode, and Mg foil as the reference and counter electrodes.
Fig. S5 Charge-discharge curves of the VS$_2$ nanosheets at different current densities in LMIB.

Fig. S6 (a) Rate capability and (b) charge-discharge curves at different current densities of the VS$_2$ nanosheets in LIB.
Fig. S7 (a) Surface and (b) cross section SEM images of the Mg anode after 500 cycles.

Fig. S8 Simulated XRD patterns of pristine VS$_2$, Li$^+$, THF, Ph$_2$Mg and Ph$_4$Al$^+$ inserted VS$_2$.
Fig. S9 FTIR pattern of the VS$_2$ nanosheets in LMIB collected after the first charge.

Fig. S10 V, S, Mg and Al elemental mappings of the charged VS$_2$ electrode in LMIB.
Fig. S11 GITT curves of the VS$_2$ nanosheets in LIB and LMIB cells during discharge process.