Supporting Information of

Popgraphene: a new 2D Planar Carbon Allotrope Composed of 5–8–5 Carbon Rings for High-performance Lithium-ion Battery Anodes from Bottom-up Programming

Shuaiwei Wang\(^a\), Baocheng Yang\(^a\), Houyang Chen\(^b\)*, Eli Ruckenstein\(^b\)

\(^a\)Henan Provincial Key Laboratory of Nanocomposites and Applications, Institute of Nanostructured Functional Materials, Huanghe Science and Technology College, Zhengzhou 450006, China

\(^b\)Department of Chemical and Biological Engineering, State University of New York at Buffalo, Buffalo, New York 14260-4200, USA

*To whom correspondence should be addressed. Email: hchen23@buffalo.edu
Figure S1. Band structures and density of states (DOS) of a popgraphene sheet based on the PBE functional and vdW corrections.
Figure S2. Band structures of a popgraphene sheet based on both HSE and PBE functionals without considering vdW corrections.
Figure S3. The band structures of a popgraphene sheet under uniaxial and biaxial loading at the strains of ±5% without vdW corrections. +5% occurs under tensile loading, whereas -5% happens under compression.
Figure S4. Adsorption structures of sixteen Li atoms on a popgraphene sheet after optimization with considering vdW corrections.
Figure S5. The fluctuations of total potential energy for Li$_4$C$_6$ during AIMD simulations at 300 K. Insets are top view (left) and side view (right) of snapshots of the equilibrium structure of Li$_4$C$_6$.
Figure S6. The corresponding diffusion energy profiles of Li diffusion on a popgraphene sheet without considering vdw corrections.