Electronic Supplementary Information

Oxygen Vacancies Derived Local Build-In Electric Field in Mesoporous Hollow Co$_3$O$_4$ Microspheres Promotes High-Performance Li-Ion Batteries

Chuanxin Houa, Yue Houa, Yuqi Fanb, Yanjie Zhaia, Yu Wanga, Zhongyu Suna, Runhua Fana,c, Feng Danga, Jun Wanga

aKey Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan 250061, China

bInstitute of Environment and Ecology, Shandong Normal University, Wenhuadong Rd 88, Lixia District, Ji’nan, 250014, China.

cCollege of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China
Fig. S1 XRD pattern of the s-CoA, which displays diffraction peaks in accord with those of previously-reported polyols-based metal alkoxides. [Chem. Mater., 2003, 15, 3543]
Fig. S2 SEM images of the s-CoA.
Fig. S3 XRD pattern of the h-CoOH.
Fig. S4 SEM images of the h-CoOH.
Fig. S5 Nitrogen adsorption-desorption isotherm loops of Co@200 (a) and Co@400 (a).
Fig. S6 XPS survey spectra of the as-prepared Co@200 (a), Co@300 (b) and Co@400 (c).
Fig. S7 High-resolution XPS spectra for Co 2p of Co@200 (a), Co@300 (b), and Co@400 (c), and the relationship between the ratio of Co^{2+} to Co^{3+} and the calcination temperature (d).
Fig. S8 SEM images of Co@200 (a, b) and Co@400 (c, d).
Fig. S9 TEM image of Co@300.
Fig. S10 Cyclic voltammetry curves of Co@200 (a) and Co@400 (b) electrodes for the first four cycles at scan rate of 0.2 mV s$^{-1}$.
Fig. S11 Charge-discharge profiles of Co@300 electrodes at different current densities.
Fig. S12 Cycling performance and coulombic efficiency of Co@200 (a) and Co@400 (b) electrodes at current density of 1.0 A g\(^{-1}\).
Fig. S13 Current responses plotted against different scan rates of Co@300 electrodes at different potentials for cathodic scans (a), and anodic scans (b).