Electronic Supporting Information for

Binder-free stainless steel@Mn$_3$O$_4$ nanoflower composite: a high-activity aqueous zinc ion battery cathode with high-capacity and long-cycle-life

Chuyu Zhu $^+$, Guozhao Fang $^+$, Jiang Zhou *, Jiahao Guo a, Ziqing Wang a, Chao Wang b,d, Jiaoyang Li b,c, Yan Tang *, and Shuquan Liang *

a School of Materials Science and Engineering, Central South University, Changsha 410083, Hunan, China.
b Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
c Institute of Nuclear & New Energy Technology, Tsinghua University, Beijing 100084, China
d Collaborative Innovation Center of Intelligent New Energy Vehicle, School of Materials Science and Engineering, Tongji University, Shanghai 201804, China

*Corresponding authors: zhou_jiang@csu.edu.cn; tangyancsu@126.com; lsq@csu.edu.cn.
† These authors contributed equally to this work.
Fig. S1 SSWM@Mn₃O₄ synthesized at (a-c) 6 h, (d-f) 12 h and (g-i) 24 h.
Fig. S2 SEM images of Mn$_3$O$_4$ powders.

Fig. S3 (a) TEM image and corresponding elemental mapping of single Mn$_3$O$_4$ nanoflower (b) All elements, (c) Mn, (d) O, (c) EDS content analysis of Mn and O elements.
Fig. S4 Cycle performance at 100 mA g\(^{-1}\) of Mn\(_3\)O\(_4\) electrode.
Fig. S5 The CV curve of bare SSWM electrode

Fig. S6 Galvanostatic intermittent titration technique (GITT) profiles of the SSWM@Mn₃O₄ cell (100 mA g⁻¹ for 10 min followed by a 0.5 h rest).