Supporting Information

K₂Nb₈O₂₁ Nanotubes with Superior Electrochemical Performance towards Ultrastable Lithium Storage

Xing Cheng, Haojie Zhu, Haoxiang Yu, Wuquan Ye, Runtian Zheng, Tingting Liu, Na Peng, Miao Shui, Jie Shu*

Faculty of Materials Science and Chemical Engineering, Ningbo University, No. 818 Fenghua Road, Jiangbei District, Ningbo 315211, Zhejiang Province, People's Republic of China

* Corresponding author: Jie Shu

Tel.: +86-574-87600787

Fax: +86-574-87609987

E-mail: sergio_shu@hotmail.com

Figure S1. Rietveld refinement XRD patterns and SEM images of $K_2Nb_8O_{21}$ -NT (a, b) and $K_2Nb_8O_{21}$ -MT (c, d).

Figure S2. Comparison of redox polarization of $K_2Nb_8O_{21}$ -NT and $K_2Nb_8O_{21}$ -MT with previously reported niobium- and titanium-based anode materials.

Figure S3. Charge/discharge curves collected at 200, 400, 600, 800, and 1000 mA g^{-1} for (a) K₂Nb₈O₂₁-NT, (b) K₂Nb₈O₂₁-MT.

Figure S4. Charge/discharge curves and corresponding cycling performances of (a, b) $K_2Nb_8O_{21}$ -NT and (c, d) $K_2Nb_8O_{21}$ -MT in the 1st, 2nd, 3rd, 10th, 100th, 200th, 300th, 400th, and 500th cycles between 0.5 and 3.0 V at a current density of 100 mA g⁻¹.

Figure S5. Charge/discharge curves and corresponding cycling performances of (a-d) $K_2Nb_8O_{21}$ -NT and (e-h) $K_2Nb_8O_{21}$ -MT for the 1st, 2nd, 10th, 100th, 200th, 400th, 600th, 800th, 1000th, 2000th, 3000th, 4000th, and 5000th cycles between 0.5 and 3.0 V at a current density of 1000 mA g⁻¹.

Figure S6. (a, d) GITT curves of K₂Nb₈O₂₁-NT and K₂Nb₈O₂₁-MT in 0.5-3 V; (b, e) the voltage profiles of single step; (c, f) variation of cell voltage during single titration plotted against $\tau^{1/2}$ to show liner fit in GITT.

Figure S7. In-situ XRD patterns of K₂Nb₈O₂₁-NT in the first two cycles.

Table S1. Comparison of redox polarization of K₂Nb₈O₂₁-NT and K₂Nb₈O₂₁-MT with previously reported niobium- and titanium-based anode materials

	K2Nb8O21-NT	TiNb ₂ O ₇	Ru _{0.01} Ti _{0.99} Nb ₂ O ₇	Cr _{0.5} Nb _{24.5} O ₆₂	TiO ₂	K2Nb8O21-MT	LiNb ₃ O ₈
Cathode/V	1.61	1.60	~1.58	1.59	1.76	1.51	~1.45
Anode/V	1.68	1.68	~1.70	1.72	1.91	1.75	~1.80
Polarization/V	0.07	0.08	~0.12	0.13	0.15	0.24	~0.35

Table S2. Comparison of specific capacity of K₂Nb₈O₂₁-NT and K₂Nb₈O₂₁-MT with previously reported niobium- and titanium-based anode materials.

Anode	Rate	Reversible capacity	Cycle number	plateau	Reference
BaLi2Ti6O14	~0.1 C	120 mAh g ⁻¹	50 cycles (0.5-3.0 V)	1.36 V	[58]
SrLi ₂ Ti ₆ O ₁₄	0.1 C	168.4 mAh g ⁻¹	5 cycles (0.5-3.0 V)	1.373 V	[59]
FeNbO ₄	0.1 C	125.5 mAh g ⁻¹	50 cycles (0.5-3.0 V)	~1.5 V	[35]
Cr _{0.5} Nb _{24.5} O ₆₂ -N	0.1 C	344 mAh g ⁻¹	2 cycles (0.8-3.0 V)	~1.65 V	[46]
Cr _{0.5} Nb _{24.5} O ₆₂ -M	0.1 C	322 mAh g ⁻¹	2 cycles (0.8-3.0 V)	~1.65 V	[46]
K ₂ Nb ₈ O ₂₁ -NT	100 mA g ⁻¹	331 mAh g ⁻¹	500 cycles (0.5-2.5 V)	~1.61 V	This work
K ₂ Nb ₈ O ₂₁ -MT	100 mA g ⁻¹	285 mAh g ⁻¹	500cycles (0.5-2.5 V)	~1.51 V	This work
KNb5O13	15 mA g ⁻¹	130 mAh g ⁻¹	30 cycles (0.5-3.0 V)	1.6 V	[37]
$K_6Nb_{10.8}O_{30}$	25 mA g ⁻¹	160 mAh g ⁻¹	30 cycles (0.5-3.0 V)	~1.6 V	[37]