Electronic Supplementary Information

Synergetic co-immobilization of SeO$_4^{2-}$ and Sr$^{2+}$ from aqueous solution onto multifunctional graphene oxide and carbon-dot based layered double hydroxide nanocomposites and their mechanistic investigation

Paulmanickam Koilraj, Yuta Kamura, Keiko Sasaki*

*Corresponding Author

Department of Earth Resources Engineering, Faculty of Engineering, Kyushu University, 744 Motoooka, Fukuoka 819-0395, Japan

*Corresponding Author

Prof. Dr. Keiko Sasaki

Department of Earth Resources Engineering

Faculty of Engineering

Kyushu University

744 Motoooka

Fukuoka 819-0395

Japan

Tel./Fax. +81 92 802 3338

Email: keikos@mine.kyushu-u.ac.jp

Author Information

Paulmanickam Koilraj - koilrajp@gmail.com; koilraj@mine.kyushu-u.ac.jp
Figure S1. PXRD peak fitting of as-synthesized MgAl-NO$_3$-LDH, MgAl-NO$_3$-LDH/GO and MgAl-NO$_3$-LDH/C-dot nanocomposites.

Figure S2 XPS C 1s regions of MgAl-NO$_3$-LDH/C-dot nanocomposites before and after adsorption of Sr$^{2+}$ and SeO$_4^{2-}$.
Figure S3 XPS C 1s regions of MgAl-NO$_3$-LDH/GO nanocomposites before and after adsorption of Sr$^{2+}$ and SeO$_4^{2-}$.