Supplementary Information

Imprinted MoS₂ achieving high-efficient self-separative molecule extraction

Qizhang Huang,^{a,c} Peili Chen,^a Yueyun Fang,^{a,c} Pengyi Liu,^b Jifu Shi^{*a,b} and Gang

Xu^{*a,d}

^aGuangzhou Institute of Energy Conversion, Key Laboratory of Renewable Energy, Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Chinese Academy of Sciences, Guangzhou 510640, China E-mail: shijifu2017@126.com; xugang@ms.giec.ac.cn

^bSiyuan Laboratory, Department of Physics, Jinan University, Guangzhou 510632, Guangdong, China

^cUniversity of Chinese Academy of Sciences, Beijing 100049, China

^dTibet New Energy Research and Demonstration Centre, Lhasa, Tibet 850000, China

Supplementary Information S1:

Figure S1. Imprinting in animals: a) ducklings on Corgi,^{w1} b) new-hatched ducks on hen,^{w2} and c) wolf cub on Rottweiler.^{w3}

Log in the websites below for more detailed information about imprinting in animals:

w1. Ducklings on Corgi: http://www.thatcutesite.com/two-ducklings-imprint-on-a-

<u>corgi/</u>

w2. Wolf cub on Rottweiler: <u>http://www.dailymail.co.uk/news/article-</u>

1192276/Barking-true-The-touching-bond-Rottweiler-wolf-cub.html

w3. New-hatched ducks on hen:

https://www.deathandtaxesmag.com/181417/hilda-the-hen-sits-on-the-wrong-nest-

hatches-crazy-cute-baby-ducks/

Supplementary Information S2:

Sips model which shares both attributes of Langmuir and Freundlich models is defined as follow:

$$q_{e} = \frac{q_{m}K_{s}C_{e}^{n_{s}}}{1 + K_{s}C_{e}^{n_{s}}}$$
(1)

Here, $q_{\rm m}$ is the maximum adsorption capacity, $q_{\rm e}$ is the equilibrium adsorption capacity, $C_{\rm e}$ is the equilibrium concentration, $K_{\rm s}$ is the Sips isotherm constant related to the energy of adsorption, and $n_{\rm s}$ is the sorbent surface heterogeneity parameter. If the value of $n_{\rm s}$ is unity, the Sips model describes the typical Langmuir adsorption behavior, otherwise the Sips model reflects a complex multilayer adsorption ($n_{\rm s}$ not equal to unity). Optionally, as the value of $C_{\rm e}$ or $K_{\rm s}$ approaches zero, the Sips isotherm describes Freundlich isotherm behavior.

Figure S2. Xps spectra of pristine MoS_2 (red line), MoS_2 with adsorbed RhB (black line), and MoS_2 with adsorbed LA (blue line): a) Element scanning, b) Mo 3d, and c) S 2p.

Figure S3. SEM image of as-prepared flower-like MoS₂.

Figure S4. HRTEM of the (a) edge and (b) plane of MoS_2 nanosheet, and (c) Mo and S element mapping on MoS_2 edge.

Figure S5. Water contact angle (WCA) test of n-hexane- (top graph) and water-

imprinted MoS₂ (bottom graph) versus time.

Figure S6. ¹H solid-state MAS NMR spectra of pristine, water- and n-hexane-

imprinted MoS₂.

Figure S7. Recycling ability of imprinted MoS_2 for heterophasic adsorption.

Figure S8. Imprinted MoS₂ d) wrapped by water droplet submerged in n-hexane and

e) wrapped by n-hexane droplet submerged in water.

Figure S9. Fourier transformed infrared spectra (FTIR) of lauric acid (LA), LA adsorbed by MoS_2 in monophase (both MoS_2 and LA in n-hexane) and heterophase (MoS₂ in water but LA in n-hexane).

Figure S10 indicates that MoS_2 soaked by water and n-hexane have no change in its flower-like morphology, compared with as-prepared MoS_2 .

Figure S10. SEM images of a) as-prepared MoS_2 , b) water-soaked MoS_2 , and c) n-hexane-soaked MoS_2 .