Supplementary Information

Imprinted MoS$_2$ achieving high-efficient self-separative molecule extraction

Qizhang Huang,a,c Peili Chen,a Yueyun Fang,a,c Pengyi Liu,b Jifu Shia,b and Gang Xua,d

aGuangzhou Institute of Energy Conversion, Key Laboratory of Renewable Energy, Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Chinese Academy of Sciences, Guangzhou 510640, China
E-mail: shijifu2017@126.com; xugang@ms.giec.ac.cn

bSiyuan Laboratory, Department of Physics, Jinan University, Guangzhou 510632, Guangdong, China

cUniversity of Chinese Academy of Sciences, Beijing 100049, China

dTibet New Energy Research and Demonstration Centre, Lhasa, Tibet 850000, China
Supplementary Information S1:

![Imprinting in animals: a) ducklings on Corgi, b) new-hatched ducks on hen, and c) wolf cub on Rottweiler.](image)

Figure S1. Imprinting in animals: a) ducklings on Corgi, b) new-hatched ducks on hen, and c) wolf cub on Rottweiler.

Log in the websites below for more detailed information about imprinting in animals:

Supplementary Information S2:

Sips model which shares both attributes of Langmuir and Freundlich models is defined as follow:
\[q_e = \frac{q_m K_s C_e^{n_s}}{1 + K_s C_e^{n_s}} \] \hspace{1cm} (1)

Here, \(q_m \) is the maximum adsorption capacity, \(q_e \) is the equilibrium adsorption capacity, \(C_e \) is the equilibrium concentration, \(K_s \) is the Sips isotherm constant related to the energy of adsorption, and \(n_s \) is the sorbent surface heterogeneity parameter. If the value of \(n_s \) is unity, the Sips model describes the typical Langmuir adsorption behavior, otherwise the Sips model reflects a complex multilayer adsorption (\(n_s \) not equal to unity). Optionally, as the value of \(C_e \) or \(K_s \) approaches zero, the Sips isotherm describes Freundlich isotherm behavior.

Figure S2. Xps spectra of pristine MoS\(_2\) (red line), MoS\(_2\) with adsorbed RhB (black line), and MoS\(_2\) with adsorbed LA (blue line): a) Element scanning, b) Mo 3d, and c) S 2p.
Figure S3. SEM image of as-prepared flower-like MoS$_2$.
Figure S4. HRTEM of the (a) edge and (b) plane of MoS$_2$ nanosheet, and (c) Mo and S element mapping on MoS$_2$ edge.

Figure S5. Water contact angle (WCA) test of n-hexane- (top graph) and water-imprinted MoS$_2$ (bottom graph) versus time.

Figure S6. 1H solid-state MAS NMR spectra of pristine, water- and n-hexane-imprinted MoS$_2$.
Figure S7. Recycling ability of imprinted MoS$_2$ for heterophasic adsorption.

Figure S8. Imprinted MoS$_2$ d) wrapped by water droplet submerged in n-hexane and e) wrapped by n-hexane droplet submerged in water.
Figure S9. Fourier transformed infrared spectra (FTIR) of lauric acid (LA), LA adsorbed by MoS$_2$ in monophase (both MoS$_2$ and LA in n-hexane) and heterophase (MoS$_2$ in water but LA in n-hexane).

Figure S10 indicates that MoS$_2$ soaked by water and n-hexane have no change in its flower-like morphology, compared with as-prepared MoS$_2$.

Figure S10. SEM images of a) as-prepared MoS$_2$, b) water-soaked MoS$_2$, and c) n-hexane-soaked MoS$_2$.