Electronic Supplementary Information (ESI):

Multi-cation crosslinked anion exchange membranes from microporous Tröger's base copolymers

Chuan Hu, Qiugen Zhang*, Chenxiao Lin, Zhen Lin, Ling Li, Faizal Soyekwo, Aimei Zhu and Qinglin Liu

Contents

<table>
<thead>
<tr>
<th>Scheme</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
<td>Synthetic process of the DPM/DMBP-QTB copolymer.</td>
<td>3</td>
</tr>
<tr>
<td>S2</td>
<td>Synthesis of the Br-TQA.</td>
<td>4</td>
</tr>
<tr>
<td>S3</td>
<td>Synthesis of the BQB.</td>
<td>4</td>
</tr>
<tr>
<td>S4</td>
<td>The reaction route of the crosslinked DPM/DMBP-QTB AEMs.</td>
<td>5</td>
</tr>
<tr>
<td>S1</td>
<td>The 1H NMR spectrum and digital photo of the DPM/DMBP-TB copolymer.</td>
<td>6</td>
</tr>
<tr>
<td>S2</td>
<td>The 1H NMR spectrum and digital photo of the Br-QA.</td>
<td>7</td>
</tr>
<tr>
<td>S3</td>
<td>The 13C NMR spectrum of the Br-QA.</td>
<td>8</td>
</tr>
<tr>
<td>S4</td>
<td>The 15N NMR spectrum of the Br-QA.</td>
<td>9</td>
</tr>
<tr>
<td>S5</td>
<td>FT-IR spectrum of the Br-QA at 25 °C (KBr).</td>
<td>10</td>
</tr>
<tr>
<td>S6</td>
<td>The 1H NMR spectrum and digital photo of the N, N-DQA</td>
<td>11</td>
</tr>
<tr>
<td>S7</td>
<td>The 13C NMR spectrum of the N, N-DQA.</td>
<td>12</td>
</tr>
<tr>
<td>S8</td>
<td>The 15N NMR spectrum of the N, N-DQA.</td>
<td>13</td>
</tr>
<tr>
<td>S9</td>
<td>FT-IR spectrum of the N, N-DQA at 25 °C (KBr).</td>
<td>14</td>
</tr>
<tr>
<td>S10</td>
<td>The 1H NMR spectrum and digital photo of the Br-TQA</td>
<td>15</td>
</tr>
<tr>
<td>S11</td>
<td>The 13C NMR spectrum of the Br-TQA.</td>
<td>16</td>
</tr>
<tr>
<td>S12</td>
<td>The 15N NMR spectrum of the Br-TQA.</td>
<td>17</td>
</tr>
</tbody>
</table>
Fig. S13 FT-IR spectrum of Br-TQA at 25 °C (KBr). ...18
Fig. S14 The 1H NMR spectrum and digital photo of the DPM/DMBP-QTB copolymer. … 19
Fig. S15 The 1H NMR spectrum and digital photo of the BQB. ...20
Fig. S16 The 13C NMR spectrum of the BQB. ...21
Fig. S17 The 15N NMR spectrum of the BQB. ...22
Fig. S18 FT-IR spectrum of the BQB at 25 °C (KBr). ...23
Fig. S19 The preparation process of the crosslinked DPM/DMBP-QTB AEMs. 23
Fig. S20 FT-IR spectra of the crosslinked DPM/DMBP-QTB AEMs.24
Fig. S21 FT-IR spectra of the crosslinked DPM/DMBP-QTB AEMs and BQB. 25
Fig. S22 The water contact angles of the crosslinked DPM/DMBP-QTB AEMs at 25 °C. … 26
Fig. S23 3D AFM surface topographic of the DPM/DMBP-QTB-1.0/2.0 AEMs. 26
Fig. S24 AFM phase images of the DPM/DMBP-QTB-1.0 (a) /2.0 (b) AEMs27
Fig. S25 The activation energy (E_a) of the crosslinked DPM/DMBP-QTB AEMs. 27
Fig. S26 The solid state 13C NMR spectra of the DPM/DMBP-QTB-1.5 membrane before
and after alkaline resistance test. ..28
Fig. S27 The mechanical properties of the DPM/DMBP-QTB-1.5 membrane before and after
alkaline resistance test. ... 29
Fig. S28 The water uptake and swelling ratio of the DPM/DMBP-QTB-1.5 membrane before
and after alkaline resistance test. ..30
Fig. S29 The conductivity, stability factor and IEC of DPM/DMBP-QTB-1.5 and other cross-
linked AEMs reported recently ...31
References ..31
Scheme S1 Synthetic process of the DPM/DMBP-QTB copolymer.
Scheme S2 Synthesis of the Br-TQA.

Scheme S3 Synthesis of the BQB.
Scheme S4 The reaction route of the crosslinked DPM/DMBP-QTB AEMS.
Fig. S1 The 1H NMR spectrum and digital photo of the DPM/DMBP-TB copolymer.

1H NMR (400 MHz, CDCl$_3$, δ): 7.16 (s, 2H, Ar H), 7.05 (d, $J = 7.6$ Hz, 2H, Ar H), 6.95 (s, 2H, Ar H), 6.85 (d, 2H, $J = 7.6$ Hz, Ar H), 6.70 (s, 2H, Ar H), 4.62 (m, 4H, CH$_2$), 4.28 (s, 4H, CH$_2$), 4.06 (m, 4H, CH$_2$), 3.71 (m, 2H, CH$_2$), 2.42 (d, 6H, CH$_3$).

The peak emerging from $\delta = 6.70 - 7.16$ is in response to the characteristic aromatic protons on the benzene ring. The signal at $\delta = 2.42$ is associated with the protons of methyl on the benzene rings (Ar–CH$_3$) that comes from monomer 4,4’-diamine-3,3’-dimethyl-biphenyl (DMBP). The signal at $\delta = 3.71$ is attributed to the methylene group between two benzene rings (Ar–CH$_2$–Ar) which is associated with monomer 4,4’-Diaminodiphenylmethane (DPM).
Fig. S2 The 1H NMR spectrum and digital photo of the Br-QA.

1H NMR (400 MHz, D$_2$O, δ): 1.37 (h, $J = 7.2$, 6.5 Hz, 2H, CH$_2$), 1.47 (m, 2H, CH$_2$), 1.60 (m, 2H, CH$_2$), 1.76 (m, 2H, CH$_2$), 1.85 (p, $J = 6.8$ Hz, 2H, CH$_2$), 3.07 (s, 9H, CH$_3$), 3.28 (m, 2H, CH$_2$), 3.48 (t, $J = 6.7$ Hz, 2H, CH$_2$).

The peak at δ = 3.07 (s, 9H, CH$_3$) is associated with the quaternary ammonium groups from trimethylamine. The single at δ = 1.37 − 1.85 ppm is attributed to alkyl chain from DHB.
Fig. S3 The 13C NMR spectrum of the Br-QA.

13C NMR (400 MHz, DMSO-d_6): δ (ppm) 65.40, 52.48, 35.57, 32.35, 27.44, 25.29, 22.39.
Fig. S4 The 15N NMR spectrum of Br-QA.

15N NMR (600 MHz, D$_2$O): δ (ppm) 48.77
Fig. S5 FT-IR spectrum of the Br-QA at 25 °C (KBr).

FT-IR (KBr): \(\nu \text{ (cm}^{-1}\text{)} \) 3494, 3446, 3006, 2952, 2859, 1632, 1484, 1457, 1417, 1401, 1362, 1301, 1285, 1255, 1223, 1077, 1052, 1033, 972, 951, 916, 866, 823, 812, 751, 737, 639, 551, 533, 517, 492, 453.
Fig. S6 The \(^{1}\text{H} \text{NMR} \) spectrum in \(\text{D}_2\text{O} \) and digital photo of the N, N-DQA.

\(^{1}\text{H} \text{NMR} (400 \text{ MHz, D}_2\text{O }\delta):\) 1.30 (m, 2H, CH\(_2\)), 1.40 (m, 8H, CH\(_2\)), 1.72 (m, 6H, CH\(_2\)), 2.12 (s, 6H, CH\(_3\)), 2.27 (m, 2H, CH\(_2\)), 2.98 (s, 6H, CH\(_3\)), 3.05 (s, 9H, CH\(_3\)), 3.25 (m, 6H, CH\(_2\)).

Compared with the spectrum of the Br-QA, the peak at \(\delta = 3.48 \text{ (t, } J = 6.7 \text{ Hz, } 2\text{H, CH}_2)\) disappeared. Subsequently, there were two new peaks emerged at \(\delta = 2.12 \text{ (s, 6H, CH}_3\text{)} \) and \(\delta = 2.27 \text{ (m, 2H, CH}_2\text{)}.\)
Fig. S7 The 13C NMR spectrum of the N, N-DQA.

13C NMR (400 MHz, DMSO-d_6): δ (ppm) 65.42, 63.46, 63.23, 59.34, 52.61, 50.37, 45.58, 27.19, 26.78, 26.18, 25.59, 22.24, 21.94.
Fig. S8 The ^{15}N NMR spectrum of the N, N-DQA.

^{15}N NMR (600 MHz, D_2O): δ (ppm) 52.27, 48.61, 29.45
Fig. S9 FT-IR spectrum of the N, N-DQA at 25 °C (KBr).

FT-IR (KBr): ν (cm$^{-1}$) 3440, 3001, 2936, 2852, 2817, 2781, 2764, 1782, 1629, 1485, 1467, 1422, 1402, 1379, 1354, 1300, 1258, 1223, 1209, 1172, 1158, 1103, 1062, 1042, 974, 951, 918, 850, 803, 730, 530, 453.
Fig. S10 The 1H NMR spectrum and digital photo of the Br-TQA.

1H NMR (400 MHz, DMSO-d_6 δ): 1.30 (m, 10H, CH$_2$), 1.45 (m, 2H, CH$_2$), 1.72 (m, 10H, CH$_2$), 1.80 (m, 2H, CH$_2$), 3.04 (s, 6H, CH$_3$), 3.06 (s, 6H, CH$_3$), 3.10 (s, 9H, CH$_3$), 3.3 (m, 10H, CH$_2$), 3.57 (t, $J=6.7$ Hz, 2H, CH$_2$).

Compared with the spectrum of the N, N-DQA, the single at $\delta = 2.27$ (t, 2H, CH$_2$) disappeared. Subsequently, the peak at $\delta = 3.57$ (t, $J=6.7$ Hz, 2H, CH$_2$) appeared again. Furthermore, the three peaks located at $\delta = 3.04 - 3.10$ (s, 21H, CH$_3$) corresponded to three quaternary ammonium groups which indicated that the target product was successfully synthesized.
Fig. S11 The 13C NMR spectrum of the Br-TQA.

13C NMR (400 MHz, DMSO-d_6): δ (ppm) 65.36, 63.23, 52.54, 50.42, 35.63, 32.37, 27.47, 25.59, 25.53, 22.21, 21.94.
Fig. S12 The 15N NMR spectrum of the Br-TQA.

15N NMR (600 MHz, D$_2$O): δ (ppm) 54.17, 50.01, 48.44
Fig. S13 FT-IR spectrum of Br-TQA at 25 °C (KBr).

FT-IR (KBr): ν (cm\(^{-1}\)) 3454, 3009, 2947, 2857, 2694, 2067, 1726, 1620, 1487, 1467, 1419, 1402, 1353, 1315, 1277, 1254, 1133, 1062, 1010, 967, 950, 914, 803, 731, 637, 554, 510, 453.
Fig. S14 The 1H NMR spectrum and digital photo of the DPM/DMBP-QTB copolymer.

Apparently, compared with the spectrum of the DPM/DMBP-QTB, the signal at $\delta = 3.04 - 3.10$ (m, 21H, CH$_3$) are attributed to the quaternary ammonium groups from Br-TQA. The peaks located at $\delta = 1.33 - 1.70$ (m, 24H, CH$_2$) were associated with the alkyl chain.
Fig. S15 The 1H NMR spectrum and digital photo of the BQB.

1H NMR (400 MHz, DMSO-d$_6$, δ): 1.30 (m, 8H, CH$_2$), 1.45 (dq, J = 9.0, 7.2 Hz 4H, CH$_2$), 1.69 (m, 8H, CH$_2$), 1.83 (dt, J = 14.8, 6.8 Hz 4H, CH$_2$), 3.03 (s, 12H, CH$_3$), 3.28 (dt, J = 12.8, 4.6 Hz, 8H, CH$_2$), 3.55 (t, J = 6.7 Hz, 4H, CH$_2$)
Fig. S16 The 13C NMR spectrum of the BQB.

13C NMR (400 MHz, DMSO-d_6): δ (ppm) 63.29, 50.37, 35.58, 32.38, 27.48, 25.59, 25.35, 22.10, 21.94.
Fig. S17 The ^{15}N NMR spectrum of the BQB.

^{15}N NMR (600 MHz, D_2O): δ (ppm) 51.92.
Fig. S18 FT-IR spectrum of the BQB at 25 °C (KBr).

FT-IR (KBr): ν (cm$^{-1}$) 3454, 3009, 2947, 2857, 2694, 2067, 1726, 1620, 1487, 1467, 1419, 1402, 1353, 1315, 1277, 1254, 1133, 1062, 1010, 967, 950, 914, 803, 731, 637, 554, 510, 453.

Fig. S19 The preparation process of the crosslinked DPM/DMBP-QTB AEMs.
The broad vibration bands at 3420 cm\(^{-1}\) is contributed to \(-\text{OH}\) groups that comes from the bound water.\(^{[1]}\) The strong single peak near 2950 cm\(^{-1}\) is associated with the Stretching vibration of \(-\text{CH}_2-\) group.\(^{[2]}\) The peaks at 1662 cm\(^{-1}\) is the bending vibration of benzene ring. In addition, the peaks at 1329 cm\(^{-1}\) and 1101 cm\(^{-1}\) are assigned to the C–N and C–N\(^+\) groups, respectively.\(^{[3-5]}\)

Fig. S20 FT-IR spectra of the crosslinked DPM/DMBP-QTB AEMs.
Fig. S21 FT-IR spectra of the crosslinked DPM/DMBP-QTB AEMs and BQB.
Fig. S22 The water contact angles of the crosslinked DPM/DMBP-QTB AEMs at 25 °C.

Fig. S23 3D AFM surface topographic of the DPM/DMBP-QTB-1.0 (a) / 2.0 (b) membranes.
Fig. S24 AFM phase images of the membrane DPM/DMBP-QTB-1.0 (a) /2.0 (b).

Fig. S25 The activation energy (E_a) of the crosslinked DPM/DMBP-QTB AEMs.

The relationship between the conductivity and temperature can be measured by E_a. The E_a for ionic transport can be calculated by Arrhenius equation ($\ln\sigma = \ln\sigma_0 - \frac{E_a}{RT}$), where σ is the conductivity of membrane, σ_0 is the frequency factor which is independent of temperature, R
is the universal gas constant (8.314 J mol\(^{-1}\) K\(^{-1}\)) and T is the absolute temperature.\(^6\)

Fig. S26 The solid state \(^{13}\)C NMR spectra for the DPM/DMBP-QTB-1.5 membrane before and after alkaline ability test.

The \(^{13}\)C Cross polarization/magic angle spinning (\(^{13}\)C CP/MAS) solid state spectra were recorded on a Bruker Advance III 400 spectrometer. The signals around 128 ppm correspond to carbon of benzene. The peak at 75 ppm is ascribed to \(=\text{N}^+\text{CH}_2\text{N}−\) in the backbone. The peaks around 63 ppm are associated with the \(=\text{N}^+\text{CH}_2\) groups in the side chain. The peak located at 55 ppm is contribute to the \(=\text{N}−\text{CH}_2−\text{Ar}\) groups. The peak at 52 ppm is ascribed to \((\text{CH}_3)_2\text{N}^+−\) groups.
Fig. S27 The mechanical properties of the DPM/DMBP-QTB-1.5 membrane before and after alkali resistance test.
Fig. S28 The water uptake and swelling ratio of the DPM/DMBP-QTB-1.5 membrane before and after alkali resistance test.
Fig. S29 The conductivity, stability factor and IEC of DPM/DMBP-QTB-1.5 and other cross-linked AEMs reported recently.7-16 The hollow symbols and solid symbols represent the stability factor and conductivity, respectively.

References

