Supporting Information

Perovskite $\text{La}_{0.75}\text{Sr}_{0.25}\text{Cr}_{0.5}\text{Mn}_{0.5}\text{O}_{3-\delta}$ Sensitized SnO_2 Fiber-in-Tube Scaffold: Highly Selective and Sensitive Formaldehyde Sensing

By Joon-Young Kang, Ji–Soo Jang, Won-Tae Koo, Jongsu Seo, Yoonseok Choi, Min-Hyeok Kim, Dong-Ha Kim, Hee-Jin Cho, WooChul Jung and Il–Doo Kim*

Contents

1. SEM image of pristine SnO_2 NTs, 2.5 wt%-, and 30 wt% LSCM@SnO$_2$ FITs.

2. SAED pattern of LSCM@SnO$_2$ FITs.

3. XRD analysis data of LCO particles, LCO@SnO$_2$ FITs.

4. SEM image of LCO particles, LSCM@SnO$_2$ NFs, LCO@PVP/Sn as-spun NF and LCO@SnO$_2$ FITs.

5. Formaldehyde sensing tests as a function of loading amount of LSCM particles and temperature-dependent sensing tests.

6. Resistance variation graphs and response times of LSCM@SnO$_2$ FITs towards 1–5 ppm of formaldehyde gases.

7. Recovery times of SnO_2 NFs, SnO_2 NTs, LCO@SnO$_2$ NFs, LSCM@SnO$_2$ NFs, and LSCM@SnO$_2$ FITs and resistance variation of LSCM@SnO$_2$ FITs after injection of air in the concentration of 1-5 ppm of formaldehyde.

8. UPS analysis of LSCM particles.

9. XPS spectra of (a) Mn 2p of pristine LSCM particles and (b) Sn 3d of LSCM@SnO$_2$ FITs after heating at 400 °C.
10. XPS spectra of O 1s of LCO and LSCM particles and spectra feature table of O 1s.

11. Resistance variation graph of LSCM particles during 1-5 ppm of formaldehyde exposure.

Table 1. Resistance values of LSCM@SnO₂ FITs before and after injection of formaldehyde gas.
Fig. S1. SEM image of a) pristine SnO$_2$ NTs, b) 2.5 wt%-, and c) 30 wt% LSCM@SnO$_2$ FITs.
Fig. S2. SAED pattern of LSCM@SnO$_2$ FITs.
Fig. S3. XRD analysis data of LCO particles and LCO@SnO\textsubscript{2} FITs.
Fig. S4. SEM image of a) LCO particles, b) LSCM@SnO$_2$ NFs, c) as-spun LCO@PVP/Sn NFs and d) LCO@SnO$_2$ FITs.
Fig. S5. a) Formaldehyde sensing tests at 400 °C as a function of loading amount of LSCM particles and b) temperature-dependent sensing tests toward 5 ppm of formaldehyde.
Fig. S6. Resistance variation graphs and response times of LSCM@SnO$_2$ FITs towards a) 5 ppm, b) 4 ppm, c) 3 ppm, d) 2 ppm, and e) 1 ppm of formaldehyde gases.

The response time is defined as the time taken for the resistance to decrease by 90% of maximum resistance difference ($R_{\text{air}} - R_{\text{gas}}$) after injecting reducing gases. In case of 5 ppm formaldehyde exposure, R_{air} and R_{gas} are 253.03 kΩ and 9.10 kΩ, respectively. Therefore, 90% of $R_{\text{air}} - R_{\text{gas}}$ is 219.54 kΩ, and the response time is the time taken for the resistance to decrease 253.03 kΩ to 33.49 kΩ (253.03-219.54 kΩ). As indicated in Fig. S6a, the response time of LSCM@SnO$_2$ FITs is 12 s, in case of 5 ppm formaldehyde exposure. The same calculation method is applied to 4, 3, 2, and 1 ppm of formaldehyde exposure, and to the control samples (pristine SnO$_2$ NFs, SnO$_2$ NTs, LSCM@SnO$_2$ NFs, and LCO@SnO$_2$ FITs).
Fig. S7. a) Recovery times of SnO$_2$ NFs, SnO$_2$ NTs, LCO@SnO$_2$ NFs, LSCM@SnO$_2$ NFs, and LSCM@SnO$_2$ FITs in the concentration range of 1–5 ppm. b-f) Resistance variation of LSCM@SnO$_2$ FITs after injection of air and recovery times in the concentration of 1-5 ppm of formaldehyde.
Figure S8. UPS analysis of LSCM particles.
Figure S9. XPS spectra of (a) Mn 2p of pristine LSCM particles and (b) Sn 3d of LSCM@SnO$_2$ FITs after heating at 400 °C.
Figure S10. XPS spectra of O 1s of a) LCO and b) LSCM particles and c) spectra feature table of O 1s.
Figure S11. Resistance variation graph of LSCM particles toward 1-5 ppm of formaldehyde.
Table S1. Resistance values of LSCM@SnO$_2$ FITs before and after injection of formaldehyde gas.

<table>
<thead>
<tr>
<th>Gas concentration (ppm)</th>
<th>R_{air} (0 s)</th>
<th>R_{gas} (4s)</th>
<th>8 s</th>
<th>12 s</th>
<th>16 s</th>
<th>20 s</th>
<th>24 s</th>
<th>28 s</th>
<th>32 s</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>253.03</td>
<td>225.31</td>
<td>44.94</td>
<td>24.94</td>
<td>19.31</td>
<td>16.60</td>
<td>15.01</td>
<td>14.00</td>
<td>13.31</td>
</tr>
<tr>
<td>4</td>
<td>240.28</td>
<td>241.00</td>
<td>231.61</td>
<td>60.03</td>
<td>30.99</td>
<td>23.85</td>
<td>20.47</td>
<td>18.54</td>
<td>17.24</td>
</tr>
<tr>
<td>3</td>
<td>240.99</td>
<td>241.80</td>
<td>240.80</td>
<td>95.00</td>
<td>43.55</td>
<td>31.49</td>
<td>27.03</td>
<td>24.37</td>
<td>22.62</td>
</tr>
<tr>
<td>2</td>
<td>254.07</td>
<td>254.90</td>
<td>255.06</td>
<td>191.07</td>
<td>79.44</td>
<td>51.06</td>
<td>41.35</td>
<td>36.71</td>
<td>34.08</td>
</tr>
<tr>
<td>1</td>
<td>282.27</td>
<td>282.39</td>
<td>177.35</td>
<td>116.89</td>
<td>89.53</td>
<td>77.06</td>
<td>69.79</td>
<td>65.17</td>
<td>61.94</td>
</tr>
</tbody>
</table>