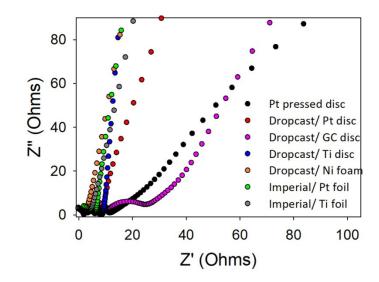
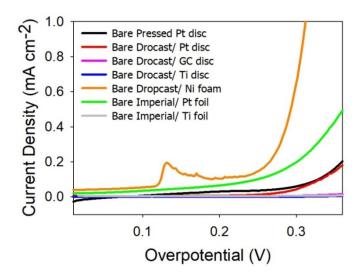
Supporting Information

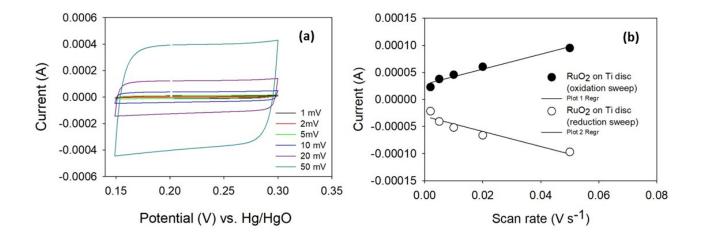
Determining the Importance of the Electrode Support and Fabrication Method during the Initial Screening Process of an Active Catalyst for the Oxygen Evolution Reaction

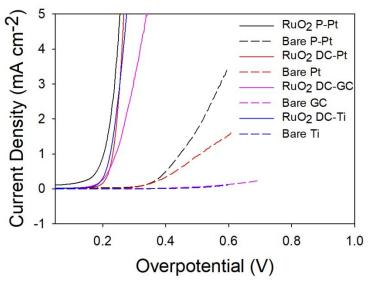

Michelle P. Browne* and Andrew Mills*

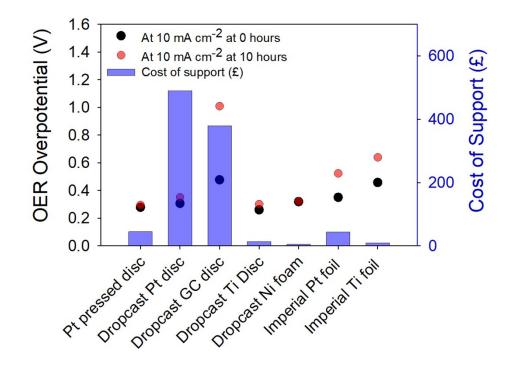
School of Chemistry and Chemical Engineering, Queens University Belfast, UK.


Table S1. Summary of RuO₂ coated electrodes fabricated in this study

Powder to electrode fabrication method techniques (acronym):	Pressed disc	Dropcast	Doctor-blade
Substrate materials used	Pt	Pt, Ti, GC discs Ni foam*	Pt, Ti
Solvents and additives used during fabrication	None	ethanol, water, Nafion	ethanol, water, glacial acetic acid, terpineol, ethyl cellulose
Additional annealing steps	None	Dried at 40 °C for 30 mins * dried in air for 30 mins	450 °C for 30 mins
Catalyst loading	1.2 mg cm ⁻²	Discs: 1.3 mg cm ⁻² Foam: 1.1 mg cm ⁻²	Approx 1 mg cm ⁻²
Electrode naming**	P-metal	DC-metal	DB-metal


**For the electrode naming, the P-Pt stands for Pressed-Platinum i.e. Fabrication technique – material of support


Figure S1. Nyquist plot of the RuO_2 coated Pt Pressed disc, RuO_2 dropcast Pt discs, GC discs, Ti disc and Ni foam and doctor-blade coated RuO_2 Pt and Ti foil in 1M NaOH


Figure S2. LSV curves of the bare supports at low current densities at a scan rate of 0.1 mV/s⁻¹ in 1M NaOH.

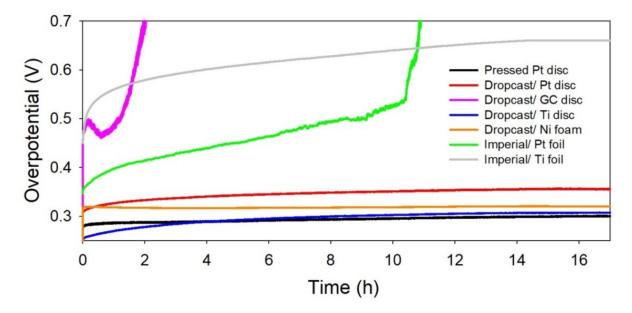

Figure S3. Typical Electrochemical Surface Area Measurement (ECSA) (a) Cyclic Voltammograms for RuO_2 dropcast on a Ti disc (b) Capacitance curves for the data in Figure (a)

Figure S4. LSV curves of the RuO_2 coated Pt Pressed disc, RuO_2 dropcast Pt discs, GC discs and Ti disc (i.e. optimum support/fabrication technique combination for OER screening) at a scan rate of 0.1 mV/s⁻¹ in 1M NaOH with a rotation speed of 1600 rpm.

Figure S5. Summary of the RuO_2 coated electrodes OER activity at 10 mA cm⁻² at a time of 0 hours and at 10 mA cm⁻² at a time of 10 hours (from the stability tests, Figure S6) and the cost of the bare supports.

Figure S6. Stability curves of all the RuO_2 coated electrodes in 1M NaOH over 17 hours at a current density of 10 mA cm⁻².