Supporting Information

Hierarchical Porous $\text{Li}_4\text{Ti}_5\text{O}_{12}$-$\text{TiO}_2$ Composite Anode Materials with Pseudocapacitive Effect for High-Rate and Low-Temperature application

Chao Huang a,b, Shi-Xi Zhaoa*, Hang Peng a,b, Yuan-Hua Linb and Ce-Wen Nanb, Guo-Zhong Caoc

aGraduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, China.
bSchool of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
cDepartment of Materials Science and Engineering, University of Washington, Seattle, WA 98195, USA

*Corresponding author: Email: zhaosx@sz.tsinghua.edu.cn (S.X.Zhao); gzcao@uw.edu (G.Z.Cao)

Supplementary Figures

Figure S1. The XRD patterns of as-prepared hierarchical hydrogen porous titanium oxide hydrate (HP HTOH) microspheres.

Figure S2. The XRD refinement data of HP LTO-TO microspheres.
Figure S3. The SEM images of HP LHTO (a) before and (b-f) after calcined at 500, 600, 700 and 800 °C for 2h in air.

Figure S4. Nitrogen adsorption-desorption isotherms and the Barrett-Joyner-Halenda (BJH) pore size distributions of the HP LTO-TO microspheres sample of Li: Ti=5:5 calcined at 500 °C for 2 h.
Figure S5. The ratios of the faradaic pseudocapacitive effect and diffusion-limited reaction benefiting enhancement of capability. The data were taken at the slow sweep rate of 0.5 mV/s.

Figure S6. The discharge voltage profiles of HP LHTO at various current density from 0.1 C to 30 C (broken line is due to the test program take less points at larger rate).
Figure S7. The XRD patterns and SEM images of (a,c) a commercial LTO (b,d) a commercial graphite.

Figure S8. (a) Graph of Z_{Re} plotted against $\omega^{-1/2}$ at low frequency section of C-LTO. (b) The linear relationship between lnD and $10^3/T$ at different temperature.