Electronic Supplementary Information

Visible-light CO₂ reduction over a ruthenium(II)-complex/C₃N₄ hybrid photocatalyst: the promotional effect of silver species

Kazuhiko Maeda,*a Daehyeon An,a Chandana Sampath Kumara Ranasinghe,b Tomoki Uchiyama,c Ryo Kuriki,a,d Tomoki Kanazawa,a Daling Lu,e Shunsuke Nozawa,f Akira Yamakata,b Yoshiharu Uchimoto,c Osamu Ishitania

a Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1-NE-2 Ookayama, Meguro-ku, Tokyo 152-8550, Japan.
b Graduate School of Engineering, Toyota Technological Institute, 2-12-1 Hisakata, Tempaku, Nagoya 468-8511, Japan.
c Graduate School of Human and Environmental Studies, Kyoto University, Nihonmatsu-cho, Yoshida, Sakyo-ku, Kyoto 606-8317, Japan.
d Japan Society for the Promotion of Science, Kojimachi Business Center Building, 5-3-1, Kojimachi, Chiyoda-ku, Tokyo 102-0083, Japan.
e Suzukakedai Materials Analysis Division, Technical Department, Tokyo Institute of Technology 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Japan.
f I Institute of Materials Structure Science, High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan.

*To whom corresponding author should be addressed.

TEL: +81-3-5734-2239, FAX: +81-3-5734-2284
Email: maedak@chem.titech.ac.jp
Fig. S1. An enlarged view of the XRD pattern of 2.0 wt% Ag-modified NS-C$_3$N$_4$ treated at 623 K with H$_2$. The # mark is assigned to (111) diffraction peak of Ag0.

Fig. S2. (A) XRD patterns and (B) diffuse reflectance spectra of 2.0 wt% Ag-modified NS-C$_3$N$_4$ prepared at different conditions. The # mark in the panel (A) is assigned to (111) diffraction peak of Ag0. A broad peak at around 22 degree in XRD patterns originated from a glass folder for the measurement.