Supporting information

Colloidal Ni_{2-x}Co_xP nanocrystals for the hydrogen evolution reaction

Junfeng Liu,^a Zhenxing Wang,^b Jeremy David,^c Jordi Llorca,^d Junshan Li,^a Xiaoting Yu,^a Alexey Shavel,^a Jordi Arbiol,^{ce} Michaela Meyns,^{*a} Andreu Cabot^{*ae}

^a Catalonia Institute for Energy Research (IREC), Sant Adrià de Besòs, 08930 Barcelona, Spain
^b State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, 710049, Xi'an, China
^c Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193 Barcelona, Catalonia, Spain
^d Institute of Energy Technologies, Department of Chemical Engineering and Barcelona Research Center in Multiscale Science and Engineering, Universitat Politecnica de Catalunya, Eduard Maristany 10-14, 08019 Barcelona, Spain
^e ICREA, Pg. Lluis Companys 23, 08010 Barcelona, Catalonia, Spain
* Corresponding author
E-mail: michaela.meyns@awi.de, acabot@irec.cat

Contents

1. DFT calculations	2
2. Size distribution and geometric surface area	4
3. Additional HRTEM characterization	5
4. XPS survey	8
5. Crystal structure	9
6. Cl-free precursor	. 10
7. Additional electrochemical measurements	. 11
8. Comparison of catalysts	. 12
9. References	. 14

1. **DFT calculations**

Figure S1. Hexagonal crystal structures of the Ni_{2-x}Co_xP: (a) Crystal structure of Ni₂P(a = b = 5.884 Å, c = 3.369 Å); (b) Crystal structure of Ni_{1.67}Co_{0.33}P (a = b = 5.871Å, c = 3.338 Å); (c) Crystal structure of Ni_{1.33}Co_{0.67}P (a = 5.838 Å, b = 5.849 Å, c = 3.325Å); (d) Crystal structure of NiCoP (a = b = 5.805 Å, c = 3.344 Å); (e) Crystal structure of Ni_{0.67}Co_{1.33}P (a = 5.729, b = 5.893 Å, c = 3.363Å); (f) Crystal structure of Ni_{0.33}Co_{1.67}P (a = 5.673 Å, b = 5.794 Å, c = 3.389 Å); (g) Crystal structure of Co₂P (a = b = 5.725 Å, c = 3.409 Å).

Figure S2. Top view of the (0001) surface of Ni_{2-x}Co_xP (left panel) and the (0001) surface on which H*absorbed (right panel).(a) the (0001) surface of Ni₂P ($d_{Ni-H} = 1.793$ Å); (b) the (0001) surface of Ni_{1.67}Co_{0.33}P ($d_{Ni-H} = 1.801$ Å); (c) the (0001) surface of Ni_{1.33}Co_{0.67}P ($d_{Ni-H} = 1.804$ Å); (d) the (0001) surface of NiCoP ($d_{Ni-H} = 1.792$ Å); (e) the (0001) surface of Ni_{0.67}Co_{1.33}P ($d_{Ni-H} = 1.821$ Å, $d_{Co-H} = 1.747$ Å); (f) the (0001) surface of Ni_{0.33}Co_{1.67}P ($d_{Ni-H} = 1.874$ Å, $d_{Co-H} = 1.769$ Å); (g) the (0001) surface of Co₂P($d_{Co-H} = 1.801$ Å).

Composition	$\Delta E_{\rm H} ({\rm eV})$	ΔE_{ZPE} (eV)	$\Delta_{0\rightarrow298.15K}\Delta H_{H}~(eV)$	- $T\Delta S_{\rm H} (eV)$	$\Delta G_{\mathrm{H}^{*}}\left(\mathrm{eV}\right)$
Ni ₂ P	-0.228	0.067	0.052	0.205	0.096
Ni _{1.67} Co _{0.33} P	-0.196	-0.014	0.052	0.205	0.047
Ni _{1.33} Co _{0.67} P	-0.211	-0.005	0.052	0.205	0.041
NiCoP	-0.325	0.043	0.052	0.205	-0.025
Ni _{0.67} Co _{1.33} P	-0.508	0.039	0.052	0.205	-0.212
Ni _{0.33} Co _{1.33} P	-0.565	0.038	0.052	0.205	-0.270
Co ₂ P	-0.699	0.058	0.052	0.205	-0.384

Table S1. Calculated adsorption energies and Gibbs free energies of H adsorption on $Ni_{2-x}Co_xP$ (0001) surface.

2. Size distribution and geometric surface area

Figure S3. Size distributions of $Ni_{2-x}Co_xP$ (x = 0, 0.2, 0.6, 1.0, 1.2, 1.4, 1.8 and 2.0) NCs.

Table S2. Volume, surface and mass per NC, and geometric specific surface area of Ni_{2-x}Co_xP NCs calculated from their geometry and estimated density.

Catalysts	$V (nm^3)$	$S(nm^2)$	$m (10^{-21} g)$	$s/m (m^2 g^{-1})$
Ni ₂ P	230	181	1702	107
Ni _{1.8} Co _{0.2} P	382	254	2832	90
Ni _{1.4} Co _{0.6} P	1150	531	8566	62
NiCoP	904	450	6762	67
Ni _{0.8} Co _{1.2} P	423	319	3168	101
Ni _{0.6} Co _{1.4} P	198	194	1485	131
Ni _{0.2} Co _{1.8} P	102	133	768	173
Co ₂ P	933	678	7032	96

The density of Ni_2P and Co_2P is 7.41 and 7.54 g/cm³, respectively. The density of $Ni_{2-x}Co_xP$ is calculated by the following equation:

$$\rho = \frac{7.41(2-x) + 7.54x}{2}$$

3. Additional HRTEM characterization

Figure S4. HRTEM micrograph of $Ni_{0.6}Co_{1.4}P$ NCs (a), detail of the NC in red (b) and its corresponding power spectrum (c).

Figure S5. HRTEM micrograph of $Ni_{0.6}Co_{1.4}P$ NCs (a), detail of the NC in yellow (b) and its corresponding power spectrum (c).

Figure S6. STEM – EELS elemental composition maps of a selected area of NiCoP nanocrystals on the left image: Ni (green), Co (red) and combination Ni+Co.

on
38
34
96
7
)
36
)8

Figure S7. Ni and Co quantification maps obtained in the squared area of the STEM images in Figure S6, together with a table representing the quantification of the numbered particles.

Figure S8. STEM – EELS elemental composition maps of a selected area of $Ni_{0.4}Co_{1.6}P$ nanocrystals on the left image: Ni (green), Co (red) and combination Ni+Co.

100% —	_						
	1		3	Target/Particle	Ni (%)	Co (%)	Composition
	1	2	1.0	Target	30	70	Ni _{0.6} Co _{1.4}
	10.00	See. 1	6	1	30.02	69.98	Ni _{0.6} Co _{1.4}
	100	4	5	2	37.54	62.46	Ni _{0.75} Co _{1.25}
50% —				3	31.54	68.46	Ni _{0.63} Co _{1.37}
		-	3	4	17.46	82.54	Ni _{0.35} Co _{1.65}
	1			5	31.58	68.42	Ni _{0.63} Co _{1.37}
			6 5	6	32.91	67.09	Ni _{0.66} Co _{1.33}
0%	and a	4	7	7	20.67	79.33	Ni _{0.4} Co _{1.6}

Figure S9. Ni and Co quantification maps obtained in the squared areas of the STEM images in Figure S8, together with a table representing the quantification of the numbered particles.

4. XPS survey

Figure S10. XPS survey of NiCoP nanocrystals.

5. Crystal structure

Figure S11. Hexagonal Ni_{2-x}Co_xP structure type.

6. Cl-free precursor

Figure S12. SEM micrograph of Co₂P nanorods obtained using Co(NO₃)₂ · $6H_2O$ instead of CoCl₂ as cobalt precursor (Co(NO₃)₂· $6H_2O$: HDA : TPP = 1 : 10 : 10)

7. Additional electrochemical measurements

Figure S13. Tafel plots for the $Ni_{2-x}Co_xP$ NCs. Tafel slopes for $Ni_{2-x}Co_xP$ (x from 0 to 0.2, 0.6, 1, 1.2, 1.4, 1.6, 1.8, 2) are: 76, 70, 58, 51, 54, 61, 65, 67 mV dec⁻¹.

Figure S14. Time-dependent current density curve of NiCoP at an overpotential of 150 mV for 12 h.

8. Comparison of catalysts

Catalyst	Substrate	Electrolyte	η at 10 mA cm ⁻²	References
MoS_2	Carbon fiber	$0.5 \text{ M} \text{H}_2 \text{SO}_4$	104	1
Mo ₂ C	GCE	$0.5 \mathrm{~M~H_2SO_4}$	70	2
MoN	GCE	$0.5 \mathrm{~M~H_2SO_4}$	125	3
MoN	GCE	1.0 M KOH	139	3
$CoSe_2$	Carbon fiber	$0.5 \mathrm{~M~H_2SO_4}$	137	4
WS_2	GCE	$0.5 \mathrm{~M~H_2SO_4}$	100	5
Ni_3S_2	Ni foam	1.0 M KOH	200	6
Co ₂ P	Ti foil	$0.5 \mathrm{~M~H_2SO_4}$	134	7
FeP	GCE	$0.5 \mathrm{~M~H_2SO_4}$	100	8
MoC-Mo ₂ C	GCE	$0.5 \mathrm{~M~H_2SO_4}$	126	9
Fe ₃ C@NCNT	GCE	$0.5 \mathrm{~M~H_2SO_4}$	154	10
Fe ₃ C@NCNT	GCE	1.0 M KOH	378	10
WC/graphene	Ga-W foil	$0.5 \text{ M} \text{H}_2 \text{SO}_4$	120	11
MoS ₂ /rGO	GCE	$0.5 \mathrm{~M~H_2SO_4}$	120	12
$W(S_{0.48}Se_{0.52})_2$	Carbon fiber	$1 \text{ M H}_2\text{SO}_4$	298	13
$WS_{2(1-x)}P_{2x}$	Carbon fiber	$0.5 \mathrm{~M~H_2SO_4}$	98	14
Co ₉ S ₈ -MoS _x	Carbon fiber	$0.5 \mathrm{~M~H_2SO_4}$	98	15
$Mn_{0.05}Co_{0.95}Se_2$	GCE	$0.5 \mathrm{~M~H_2SO_4}$	174	16
CoMoS ₃	GCE	$0.5 \ M \ H_2 SO_4$	171	17
NiCoP	GCE	$0.5 \text{ M} \text{H}_2 \text{SO}_4$	97	This work

 Table S3. References of electrocatalysts for HER.

NCNT: N-doped carbon nanotubes

rGO: reduce graphene oxide

GCE: glassy carbon electrode

				Controlled		_		
Materials	Method	Metal precursors	P precursor	Composition	Size	Shape	η_{10}	Ref.
NiCoP	Plasma- assisted Electro-	NiCo hydroxide	PH ₃ gas	No	No	No	32	18
Ni-Co-P	deposition	NiCl ₂ , Co(NO ₃) ₂	NaH ₂ PO ₂	No	No	No	30	19
NiCoP	Annealing	Ni-Co-salt	NaH ₂ PO ₂	No	No	No	101	20
NiCoP	Annealing	Ni-Co carbonate	NaH ₂ PO ₂	No	No	No	118	21
NiCoP	Annealing	NiCo hydroxide	NaH ₂ PO ₂	No	No	No	124	22
NiCoP	Annealing	NiCo hydroxide	NaH ₂ PO ₂	No	No	No	104	23
NiCoP	Annealing	Ni _{1-0.5x} Co _{0.5x} (OH) ₂	NaH ₂ PO ₂	Yes	No	No	59	24
NiCoP	Annealing	NiCo hydroxide	NaH ₂ PO ₂	No	No	No	185	25
Ni-Co-P	Annealing	Ni-Co-PBA	NaH ₂ PO ₂	No	No	No	167	26
NiCoP	Annealing	NiCo ₂ O ₄	NaH ₂ PO2	Yes	No	No	44	27
NiCo ₂ P _x	Annealing	NiCo ₂ O ₄	NaH ₂ PO ₂	No	No	No	104	28
Ni _{0.69} Co _{0.31} P	Annealing	NiCoO _x	NaH ₂ PO ₂	Yes	No	No	100	29
NiCoP	Colloidal	N1(acac) ₂ , Co(acac) ₂ Ni(acac) ₂ ,	ТОР	No	No	No	102	30
$Co_{1.6}Ni_{0.4}P$	Colloidal	$Co(acac)_2$	ТОР	Yes	No	No	162	31
Ni _{2-x} Co _x P	Colloidal	$N1(OAc)_2,$ $Co(OAc)_2$	PPh ₃	Yes	No	No	>250	32 This
NiCoP	Colloidal	NiCl ₂ , CoCl ₂	TPP	Yes	Yes	Yes	97	work

 Table S4. References for synthesis of NiCoP.

9. References

- [1] J. Hu, B. Huang, C. Zhang, Z. Wang, Y. An, D. Zhou, H. Lin, M. K. H. Leung, S. Yang, *Energy Environ. Sci.* 2017, 10, 593-603.
- [2] L. Liao, S. Wang, J. Xiao, X. Bian, Y. Zhang, M. D. Scanlon, X. Hu, Y. Tang, B. Liu, H. H. Girault, *Energy Environ. Sci.* 2014, 7, 387-392.
- [3] J. Xiong, W. Cai, W. Shi, X. Zhang, J. Li, Z. Yang, L. Feng, H. Cheng, J. Mater. Chem. A 2017, 5, 24193-24198.
- [4] D. Kong, H. Wang, Z. Lu, Y. Cui, J. Am. Chem. Soc. 2014, 136, 4897-900.
- [5] L. Cheng, W. Huang, Q. Gong, C. Liu, Z. Liu, Y. Li, H. Dai, Angew. Chem. 2014, 53, 7860-7863.
- [6] C. Ouyang, X. Wang, C. Wang, X. Zhang, J. Wu, Z. Ma, S. Dou, S. Wang, *Electrochimi. Acta* 2015, **174**, 297-301.
- [7] Z. Huang, Z. Chen, Z. Chen, C. Lv, M. G. Humphrey, C. Zhang, Nano Energy 2014, 9, 373-382.
- [8] Y. Xu, R. Wu, J. Zhang, Y. Shi, B. Zhang, Chem. Commun. 2013, 49, 6656-6658.
- [9] H. Lin, Z. Shi, S. He, X. Yu, S. Wang, Q. Gao, Y. Tang, Chem. Sci. 2016, 7, 3399-3405.
- [10] L. Zhang, Y. Chen, P. Zhao, W. Luo, S. Chen, M. Shao, *Electrocatalysis* 2018, 9, 264-270.
- [11] M. Zeng, Y. Chen, J. Li, H. Xue, R. G. Mendes, J. Liu, T. Zhang, M. H. Rümmeli, L. Fu, Nano Energy 2017, 33, 356-362.
- [12] Y. Li, H. Wang, L. Xie, Y. Liang, G. Hong, H. Dai, J. Am. Chem. Soc. 2011, 133, 7296-7299.
- [13] K. Xu, F. Wang, Z. Wang X. Zhan, Q. Wang, Z. Chen, M. Safdar, J. He, ACS Nano 2014, 8, 8468-8476.
- [14] T. A. Shifa, F. Wang, K. Liu, Z. Cheng, K. Xu, Z. Wang, X. Zhan, C. Jiang, J. He, Small 2017, 1603706.
- [15] X. Zhou, X. Yang, M. N. Hedhili, H. Li, S. Min, J. Ming, K. W. Huang, W. Zhang, L. J. Li, *Nano Energy* 2017, **32**, 470-478.
- [16] Y. Liu, X. Hua, C. Xiao, T. Zhou, P. Huang, Z. Guo, B. Pan, Y. Xie, J. Am. Chem. Soc. 2016, 138, 5087-5092.
- [17] L. Yu, B. Y. Xia, X. Wang, X. W. Lou, Adv. Mater. 2016, 28, 92-97.
- [18] H. Liang, A. N. Gandi, D. H. Anjum, X. Wang, U. Schwingenschlogl, H. N. Alshareef, *Nano Lett.* 2016, 16, 7718-7725.
- [19] P. Zhang, H. Chen, M. Wang, Y. Yang, J. Jiang, B. Zhang, L. Duan, Q. Daniel, F. Li, L. Sun, J. Mater. Chem. A 2017, 5, 7564-7570.
- [20] X. Wang, R. Tong, Y. Wang, H. Tao, Z. Zhang, H. Wang, ACS Appl. Mater. Inter. 2016, 8, 34270-34279.
- [21] T. Liu, X. Yan, P. Xi, J. Chen, D. Qin, D. Shan, S. Devaramani, X. Lu, *Int. J. Hydrogen Energ.* 2017, 42, 14124-14132.

- [22] Y. Li, J. Liu, C. Chen, X. Zhang, J. Chen, ACS Appl. Mater. Inter. 2017, 9, 5982-5991.
- [23] J. Li, G. Wei, Y. Zhu, Y. Xi, X. Pan, Y. Ji, I. V. Zatovsky, W. Han, J. Mater. Chem. A 2017, 5, 14828-14837.
- [24] J. Li, M. Yan, X. Zhou, Z. Q. Huang, Z. Xia, C. R. Chang, Y. Ma, Y. Qu, Adv. Funct. Mater. 2016, 26, 6785-6796.
- [25] H. Zhang, X. Li, A. Hähnel, V. Naumann, C. Lin, S. Azimi, S. L. Schweizer, A. W. Maijenburg, R. B. Wehrspohn, Adv. Funct. Mater. 2018, 1706847.
- [26] Y. Feng, X. Y. Yu, U. Paik, Chem. Commun. 2016, 52, 1633-1636.
- [27] C. Du, L. Yang, F. Yang, G. Cheng, W. Luo, ACS Catal. 2017, 7, 4131-4137.
- [28] R. Zhang, X. Wang, S. Yu, T. Wen, X. Zhu, F. Yang, X. Sun, X. Wang, W. Hu, Adv. Mater. 2017, 1605502.
- [29] Z. Yin, C. Zhu, C. Li, S. Zhang, X. Zhang, Y. Chen, *Nanoscale* 2016, 8, 19129-19138.
- [30] C. Wang, J. Jiang, T. Ding, G. Chen, W. Xu, Q. Yang, Adv. Mater. Inter. 2016, 3, 1500454.
- [31] Y. Pan, Y. Chen, Y. Lin, P. Cui, K. Sun, Y. Liu, C. Liu, J. Mater. Chem. A 2016, 4, 14675-14686.
- [32] Q. Liang, K. Huang, X. Wu, X. Wang, W. Ma, S. Feng, RSC Adv. 2017, 7, 7906-7913.