SUPPORTING INFORMATION

Reversible facile monovalent K⁺ and Rb⁺ ions de/insertion in a KTiOPO₄-type RbVPO₄F cathode material

Stanislav S. Fedotov^{1,2}, Aleksandr Sh. Samarin², Victoria A. Nikitina^{1,2}, Dmitry A. Aksyonov¹, Sergey A. Sokolov^{2,3}, Andriy Zhugayevich¹, Keith J. Stevenson¹, Nellie R. Khasanova², Artem M. Abakumov¹, Evgeny V. Antipov²

¹ Skoltech Center for Electrochemical Energy Storage, Skolkovo Institute of Science and Technology, 143026 Moscow, Russian Federation.

² Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russian Federation.

³ Institute of Nanotechnology of Microelectronics, Russian Academy of Science, 119991, Moscow, Russian Federation.

Figure S1. SEM micrographs of RbVPO₄F at 10Kx and 100Kx magnifications.

Figure S2. SEM-EDX spectrum for RbVPO₄F.

Figure S3. TEM-EDX spectrum for RbVPO₄F.

Table S1. Fractional atomic coordinates and atomic displacement parameters for RbVPO₄F.

Atom	Wyckoff	x/a	y/b	z/c	<i>V</i> , Å ³	Occupation
P1	4d	0.4977(7)	0.3246(10)	0.2440(12)	0.034(2)	1
P2	4d	0.1787(5)	0.4845(16)	0.4986(10)	0.017(2)	1
V1	4d	0.3842(3)	0.4971(10)	0	0.0210(15)	1
V2	4d	0.2506(5)	0.2591(10)	0.2525(8)	0.0243(15)	1
F1	4d	0.2735(15)	0.465(2)	0.1199(11)	0.019(3)	1
F2	4d	0.2264(13)	0.018(3)	0.3629(12)	0.019(3)	1
01	4d	0.0167(16)	0.027(3)	0.3515(14)	0.0078(14)	1
O2	4d	0.4807(16)	0.466(3)	0.1304(16)	0.0078(14)	1
O3	4d	0.0955(13)	0.299(2)	0.2199(18)	0.0078(14)	1
O4	4d	0.4038(14)	0.198(3)	0.2742(15)	0.0078(14)	1
O5	4d	0.1145(13)	0.681(3)	0.4655(16)	0.0078(14)	1
O6	4d	0.3939(13)	0.805(3)	0.0384(16)	0.0078(14)	1
O7	4d	0.2556(14)	0.431(2)	0.3991(15)	0.0078(14)	1
08	4d	0.2590(13)	0.006(3)	0.1186(14)	0.0078(14)	1
Rb1	4d	0.1220(9)	0.7408(14)	0.1888(12)	0.0338(16)	0.5
Rb1'	4d	0.1045(10)	0.6893(17)	0.1685(10)	0.0338(16)	0.5
Rb2	4d	0.3897(9)	0.7973(18)	0.4003(7)	0.0180(15)	0.5
Rb2'	4d	0.3972(7)	0.8088(14)	0.4496(9)	0.0180(15)	0.5

Bond	Distance, Å	Bond	Distance, Å
V101	2.040(19)	V2-O3	2.063(18)
V1–O2	1.87(2)	V204	2.04(2)
V1–O5	2.089(18)	V2-07	1.914(17)
V1–O6	2.048(19)	V2–O8	2.175(19)
V1–F1	1.929(17)	V2–F1	1.963(16)
V1-F2	2.045(16)	V2-F2	1.981(17)
P205	1.568(19)	P1O1	1.51(2)
P206	1.56(2)	P1O2	1.53(2)
P207	1.492(19)	P1-O3	1.527(18)
P208	1.512(19)	P1O4	1.51(2)
Rb1–O1	2.88(2)	Rb2–O1	2.73(2)
Rb1–O2	2.72(2)	Rb2–O2	3.42(2)
Rb1–O3	2.914(16)	Rb2–O3	3.38(2)
Rb1–O5	2.95(2)	Rb2–O4	2.93(2)
Rb1–O6	2.38(2)	Rb2–O5	3.01(2)
Rb1–O7	3.466(19)	Rb2–O7	2.952(19)
Rb1–O8	2.59(2)	Rb2–O8	3.557(19)
Rb1–F1	2.76(2)	Rb2–F1	3.328(18)
Rb1–F2	2.913(19)	Rb2–F2	2.59(2)
Rb1–Rb1'	0.459(16)	Rb2–Rb2'	0.535(12)
Rb1'01	3.14(2)	Rb2'-O1	2.88(2)
Rb1'O2	2.79(2)	Rb2'O2	3.06(2)
Rb1'O3	2.600(18)	Rb2'-O3	2.86(2)
Rb1'05	3.14(2)	Rb2'-O4	3.141(19)
Rb1'06	3.06(2)	Rb2'-O5	2.830(19)
Rb1'07	3.55(2)	Rb2'07	3.116(17)
Rb1'08	2.93(2)	Rb2'08	3.346(19)
Rb1'–F1	2.69(2)	Rb2'–F1	3.032(19)
Rb1'–F2	3.364(19)	Rb2'–F2	2.761(19)
Rb1'-Rb2'	3.389(14)		

Table S2. Selected interatomic distances for RbVPO₄F.

Figure S4. EELS spectrum in the vicinity of the VL2,3 edge for RbVPO₄F compared to known spectra of V in octahedral coordination.

Figure S5. Equivalent circuit for the intercalation reaction. R_{sol} – uncompensated solution resistance; C_{CEI} – CEI capacitance; R_{cEI} – CEI resistance; C_{dl} – double layer capacitance; R_{ct} – charge transfer resistance; W – Warburg impedance.