Supporting Information

Vitamin K as a high-performance organic anode material for rechargeable potassium ion batteries

Qing Xue, Dongning Li, Yongxin Huang, Xiaoxiao Zhang, Yusheng Ye, Ersha Fan, Li Li, Feng Wu, Renjie Chen

Beijing Key Laboratory of Environmental Science and Engineering, Beijing Institute of Technology, Beijing 100081, China

Collaborative Innovation Center of Electric Vehicles in Beijing, Beijing 100081, China

*Corresponding author; Email: chenrj@bit.edu.cn

Contents

Fig.S1. SEM image of VK.
Fig.S2. (a) FT-IR and (b) Raman spectroscopy of GNT, VK and VK@GNT.
Fig.S3. CV curves of VK between 0.1 and 2.5 V at a scan rate of 1 mV s⁻¹.
Fig.S4. Discharge capacities of GNT cycled between 0.2 and 2.5V at 100 mA h g⁻¹.
Table S1. Area ratio of different kinds of C determined by XPS analysis from C1s spectrum at three states: as-prepared, discharged and charged.
Fig. S1. SEM image of VK.
(a) FT-IR and (b) Raman spectroscopy of GNT, VK and VK@GNT.
Fig. S3. CV curves of VK between 0.1 and 2.5 V at a scan rate of 1 mV s$^{-1}$.
Fig.S4. Discharge capacities of GNT cycled between 0.2 and 2.5V at 100 mA h g$^{-1}$.
Table S1. Area ratio of different kinds of C determined by XPS analysis from C1s spectrum at three states: as-prepared, discharged and charged.

<table>
<thead>
<tr>
<th></th>
<th>C=O</th>
<th>C-H/C-O-K</th>
<th>Others</th>
</tr>
</thead>
<tbody>
<tr>
<td>As-prepared</td>
<td>1.1%</td>
<td>8.861%</td>
<td>90.04%</td>
</tr>
<tr>
<td>Discharged</td>
<td>0.04%</td>
<td>10.94%</td>
<td>89.02%</td>
</tr>
<tr>
<td>Recharged</td>
<td>0.91%</td>
<td>8.3%</td>
<td>90.79%</td>
</tr>
</tbody>
</table>