Electronic Supplementary Information

Surface modification of rice husk-derived hard carbon by grafting porous carbon nanosheets for high-performance supercapacitors

Shian Dong, a Xiaojun He, *a Hanfang Zhang, a Xiaoyu Xie, a Moxin Yu, a Chang Yu, b Nan Xiao b and Jieshan Qiu *b
Contents

1. Experimental Section

2. Supplementary Figures and Tables

Fig. S1 FESEM and TEM images of MgO particles.

Fig. S2 FESEM images of intermediate product of PCNS/RHC₈ at 500 °C: (a, b) Unwashed samples; (c, d) Samples washed by acid and distilled water.

Fig. S3 TEM images of PCNS/RHC₈.

Fig. S4 (a) N₂ adsorption-desorption isotherms of PCNS₉₅₀, RHC₉₅₀ and PCNS/RHC₈; (b) Pore size distribution of PCNS₉₅₀, RHC₉₅₀ and PCNS/RHC₈; (c) Cumulative surface area of PCNS/RHC₈ and RHC₉₅₀; (d) Cumulative pore volume of PCNS/RHC₈ and RHC₉₅₀.

Fig. S5 FT-IR spectra of PCNS/RHC composites.

Fig. S6 (a) CV curves of PCNS/RHCs at 5 mV s⁻¹; (b) CV curves of PCNS/RHCs at 100 mV s⁻¹.

Fig. S7 (a) CV curves of RHC₉₅₀ at different scan rates; (b) Specific capacitances of RHC₉₅₀ at different current densities; (c) Nyquist plot of RHC₉₅₀; (d) Bode plot of RHC₉₅₀ electrodes.

Fig. S8 The equivalent circuit of Randle’s model.

Table S1 The Zeta potential of raw materials.

Table S2 The contents of C, O, N elements and oxygen-containing functional groups in PCNS/RHCs.

Table S3 Fitted equivalent circuit elements of PCNS/RHC₈ and RHC₉₅₀.
1. Experimental Section

Synthesis of PCNS/RHCs: Rice husks were obtained from the suburb of Maanshan City in China. The coal tar pitch (CTP) with a softening point of 110 °C was provided by Maanshan Iron & Steel Co. Ltd. of China. Other chemicals were purchased from Aladdin, and used as received. For a typical run, rice husks were put into a box furnace and heated to 500 °C for 1 h in Ar atmosphere. The product was washed by 0.5 M NaOH solution and distilled water to remove silicon dioxide. The rice husk-derived carbon (RHC) was obtained after the above mentioned product was dried at 110 °C. Subsequently, the mixtures of RHC (1.0 g), CTP (1.0 g), nano-MgO (8.0 g) and KOH (X g) were ground and transferred to a corundum boat, which was put into a tube furnace and heated to 300 °C at 5 °C min⁻¹ for 1 h, then heated to 950 °C for 1 h. The products were washed with 2 M HCl solution and distilled water to remove the inorganic impurities, and dried at 110 °C for 24 h before use. The obtained materials are named as PCNS/RHCₙ, where X refers to the mass of KOH. For comparison, the mixtures with RHC (2.0 g), nano-MgO (8.0 g) and KOH (8.0 g) without the presence of CTP were also heated to 950 °C for 1 h in Ar atmosphere, and the product was washed by 2 M HCl solution and distilled water to remove the inorganic impurities and dried at 110 °C for 24 h. The obtained material is denoted as RHC₉₅₀. Additionally, the mixtures with CTP (2.0 g), nano-MgO (8.0 g) and KOH (8.0 g) without the presence of RHC were also heated to 950 °C for 1 h in Ar atmosphere, and the product was washed by 2 M HCl solution and distilled water to remove the
inorganic impurities and dried at 110 °C for 24 h. The obtained material is denoted as PCNS$_{950}$.

Characterization: The Zeta potentials of MgO, CTP and RHC were tested in the deionized water by Nano-ZS90, Malvern. The microstructures of PCNS/RHCs were analyzed by field emission scanning electron microscopy (FESEM, Hitachi, S4800), transmission electron microscopy (TEM, JEOL-2100). The crystallographic structures of PCNS/RHCs were examined by X-ray diffraction (XRD, Philips X, CuKa Radiation, $\lambda=0.15406$ nm). Raman spectroscopy analysis was performed with JYLab-RamHR800, excited by a 532 nm laser, and X-ray photoelectron spectroscopy (XPS) was obtained by Thermo ESCALAB250, USA. Fourier transform infrared (FT-IR) spectra were recorded with Thermo-Scientific Nicolet 6700 spectrophotometer. The conductivity of PCNS/RHC$_8$ was measured by a four-wire method using a source measure unit (Keithley 6430). The pore structure of the sample was studied by nitrogen adsorption-desorption technique at -196 °C in an adsorption apparatus (Micrometrics, ASAP2010). The S_{BET} was calculated at a relative pressure from 0.05 to 0.20.

Electrochemical measurements: Active material (PCNS/RHCs) and polytetrafluoroethylene with the mass ratio of 90:10 were mixed together by adding some deionized water and a few drops of ethanol, followed by evaporation of solvent. Then the mixture was rolled into carbon sheet, which was dried at 110 °C under vacuum in drying oven for 2 h and punched into round films with diameter of 12 mm and mass loading of ca. 2 mg cm$^{-2}$. The as-prepared round films were used as
electrodes after being pressed on nickel foam for the electrochemical measurement in 6 M KOH electrolyte.

The electrochemical measurements were carried out in two-electrode system on an electrochemical workstation (CHI760C, Shanghai, China). The charge-discharge performance of supercapacitors was measured on a supercapacitance test system (SCTs, Arbin Instruments, USA). The electrochemical impedance spectroscopy (EIS) measurement was performed with an amplitude of 5 mV over a frequency range from 100 kHz to 0.001 Hz using a Solartron impedance analyzer (Solartron Analytical, SI 1260, UK) with a Solartron potentiostat (SI 1287).

The gravimetric specific capacitance of the electrodes, \(C \) (F g\(^{-1}\)), is calculated according to galvanostatic charge-discharge (GCD) curve based on Eq. (1).

\[
C = \frac{4I}{m \Delta V/\Delta t}
\]

(1)

where \(I \) is the discharge current (A), \(\Delta V/\Delta t \) is the average slope of the discharge curve after the voltage drop (V s\(^{-1}\)), and \(m \) is the total mass of active materials in two electrodes (g).

The energy density \(E \) (Wh kg\(^{-1}\)) and power density \(P \) (W kg\(^{-1}\)) based on the total mass of active materials in supercapacitors, are calculated according to Eqs. (2) and (3).

\[
E = \frac{1}{2 \times 4 \times 3.6} CV^2
\]

(2)

\[
P = \frac{E}{\Delta t}
\]

(3)
where V is the usable voltage after voltage drop (V) and Δt is the discharge time (s).
2. Supplementary Figures and Tables
Fig. S1 FESEM and TEM images of MgO particles.
Fig. S2 FESEM images of intermediate product of PCNS/RHC$_8$ at 500 °C: (a, b) Unwashed samples; (c, d) Samples washed by acid and distilled water.
Fig. S3 TEM images of PCNS/RHC₈.
Fig. S4 (a) N$_2$ adsorption-desorption isotherms of PCNS$_{950}$, RHC$_{950}$ and PCNS/RHC$_8$; (b) Pore size distribution of PCNS$_{950}$, RHC$_{950}$ and PCNS/RHC$_8$; (c) Cumulative surface area of PCNS/RHC$_8$ and RHC$_{950}$; (d) Cumulative pore volume of PCNS/RHC$_8$ and RHC$_{950}$.
Fig. S5 FT-IR spectra of PCNS/RHC composites.
Fig. S6 (a) CV curves of PCNS/RHCs at 5 mV s⁻¹; (b) CV curves of PCNS/RHCs at 100 mV s⁻¹.
Fig. S7 (a) CV curves of RHC$_{950}$ at different scan rates; (b) Specific capacitances of RHC$_{950}$ at different current densities; (c) Nyquist plot of RHC$_{950}$; (d) Bode plot of RHC$_{950}$ electrodes.
Fig. S8 The equivalent circuit of Randle’s model.

R_S: equivalent series resistance. \(\text{CPE}_{DL} \): double layer capacitance. \(\text{CPE}_L \): pseudocapacitance. R_{CT}: charge transfer resistance. W_0: Warburg element. R_L: leakage resistance.
Table S1 The Zeta potential of raw materials.

<table>
<thead>
<tr>
<th>Samples</th>
<th>Zeta potential (mV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RHC</td>
<td>–21.2</td>
</tr>
<tr>
<td>CTP</td>
<td>–28.8</td>
</tr>
<tr>
<td>MgO</td>
<td>21.5</td>
</tr>
</tbody>
</table>
Table S2 The contents of C, O, N elements and oxygen-containing functional groups in PCNS/RHCs.

<table>
<thead>
<tr>
<th>Samples</th>
<th>C1s (%)</th>
<th>O1s (%)</th>
<th>N1s (%)</th>
<th>O1s</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>C=O (%)</td>
</tr>
<tr>
<td>PCNS/RHC<sub>4</sub></td>
<td>95.06</td>
<td>3.32</td>
<td>1.62</td>
<td>1.36</td>
</tr>
<tr>
<td>PCNS/RHC<sub>6</sub></td>
<td>91.93</td>
<td>6.70</td>
<td>1.37</td>
<td>2.21</td>
</tr>
<tr>
<td>PCNS/RHC<sub>8</sub></td>
<td>88.28</td>
<td>10.71</td>
<td>1.01</td>
<td>2.37</td>
</tr>
</tbody>
</table>
Table S3 Fitted equivalent circuit elements of PCNS/RHC₈ and RHC₉₅₀.

<table>
<thead>
<tr>
<th>Samples</th>
<th>Rs (Ohm)</th>
<th>Rct (Ohm)</th>
<th>CPE₁DL</th>
<th>W (S s⁰.⁵)</th>
<th>CPE₂L</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCNS/RHC₈</td>
<td>0.43</td>
<td>0.62</td>
<td>0.32</td>
<td>1.5*10⁻¹⁶</td>
<td>0.0006</td>
</tr>
<tr>
<td>RHC₉₅₀</td>
<td>6.20</td>
<td>87.13</td>
<td>0.0054</td>
<td>3.8*10⁻⁴</td>
<td>0.0016</td>
</tr>
</tbody>
</table>