Supporting Information

Ionic Liquid Modified SnO$_2$ Nanocrystals as the Robust Electron Transporting Layer for Efficient Planar Perovskite Solar Cells

Chun Huanga,b, Peng Lina, Nianqing Fuc, Kaiwen Sunf, Mao Yed, Chang Liud, Xianyong Zhoud, Longlong Shue, Xiaojing Haof, Baomin Xud, Xierong Zenge, Yu Wange, and Shanming Kea,e,*

aCollege of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, P. R. China

bCollege of Optoelectronic Engineering and Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen 518060, P. R. China

cSchool of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, P. R. China

E-mail: msnqfu@scut.edu.cn

dDepartment of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518060, P. R. China

eSchool of Materials Science and Engineering, Nanchang University, Nanchang 330031, Jiangxi, P. R. China

E-mail: keshanming@gmail.com

fSchool of Photovoltaic and Renewable Energy Engineering, University of New South Wales, Sydney 2052, New South Wales, Australia
Fig. S1. TEM images of (a) n-SnO$_2$ nanoparticles, (b) fresh TMAH-modified SnO$_2$ nanoparticles and (c) TMAH-modified SnO$_2$ store for 12 hs. (d), (e) and (f) are the corresponding HRTEM images of (a), (b) and (c), respectively.

Fig. S2. Dispersion of SnO$_2$ nanoparticles at 0 h and 12 h. A without TMAH; B with TMAH modification.
Fig. S3. Raman spectra of soda lime glass substrate (black line), n-SnO$_2$ on soda lime glass (red line), and TMAH-SnO$_2$ on soda lime glass. The dark dot indicate the Raman shift for soda lime glass. Peak located at about 753 cm$^{-1}$ is a signal of TMAH.

Fig. S4. Optimization of the ETL deposition process. The (a) annealing temperature, (b) TMAH concentration, and (c) spin-coating speed dependent performance of the PSCs. It can be learned that 1 % concentration of TMAH, 2000 rpm of spin coating rate, and 150 °C of annealing temperature is optimized for efficient devices.
Fig. S5. Optical transmittance of the (a) bare FTO and SnO$_2$ coated FTO substrates, and (b) bare ITO and SnO$_2$ coated ITO substrates.

Fig. S6. (a) Morphology and (b) I-V curve of a FTO substrate from c-AFM measurement, showing ohm contact between the tip and the FTO electrode.
Table S1. Summary of hall measurements on SnO$_2$ films

<table>
<thead>
<tr>
<th>Materials</th>
<th>Sheet resistance (MΩ)</th>
<th>Resistivity (ohm·cm)</th>
<th>Mobility (cm2·V$^{-1}$·s$^{-1}$)</th>
<th>Carrier concentration (cm$^{-3}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>n-SnO$_2$</td>
<td>214</td>
<td>1.81×102</td>
<td>3.02</td>
<td>1.14×1016</td>
</tr>
<tr>
<td>TMAH-SnO$_2$</td>
<td>58</td>
<td>1.20×102</td>
<td>4.16</td>
<td>1.24×1016</td>
</tr>
</tbody>
</table>

Fig. S7. Surface SEM images for perovskite deposited on (a) n-SnO$_2$, (b) 0.5% TMAH-SnO$_2$, (c) 1% TMAH-SnO$_2$, (d) 1.5% TMAH-SnO$_2$ and (e) 2% TMAH-SnO$_2$, respectively.
Fig. S8. Stability tests for n-SnO$_2$ based and TMAH-SnO$_2$ based devices sealed with resin. Devices were stored in desiccator under relative humidity of about 15%.

Fig. S9. J-V curve of a flexible TMAH-SnO$_2$ based device constructed on ITO/PEN substrate, showing an efficiency of about 15.07%.