Supporting Information

Significant improvement in thermoelectric performance of Cu-deficient Cu$_{4-\delta}$Ga$_4$Te$_8$ ($\delta=1.12$) chalcogenide through an addition of Sb

Jiaolin Cui,a Junhao Zhu,a,b Zhongkang Han,c,* Yong Luob

Figure S1 (a) XRD patterns of the powders Cu$_{4-\delta}$Ga$_4$Sb$_x$Te$_8$ ($x=0, 0.1, 0.25, 0.4, 0.5, 0.6, 0.7$) at RT; (b) The lattice constants a and c as a function of x value.

Figure S2 (a) Selected area electron diffraction (SAED) pattern of the sample Cu$_{4-\delta}$Ga$_4$Sb$_x$Te$_8$ at $x=0.6$; (b) High resolution TEM (HRTEM) image, an inset is an magnified image, where the d spacing between the (112) crystal planes is \sim0.34 nm.
Figure S3 The results from the first principles calculation. (A) Upper panel: the crystal structures of \(\text{Cu}_{24}\text{Ga}_{32}\text{Sb}_{y}\text{Te}_{64} \) \((y=0, 2, 4, 6, 8)\) upon occupation of Sb in the Cu sites. The structures from left to right in sequence correspond to \(y=0, 2, 4, 6 \) and 8. Blue balls circled represent Sb atoms that occupy Cu sites; (B) Lower panel: the density of States (DOS) with different Sb atoms in the unit cell. It was observed that the Fermi level \((E_f)\) gradually moves to the inner side of the conduction band, and the bandgap narrows gradually with an increase in Sb content. \(d_H \) represents the formation of energy.

Figure S4 (a) High temperature XRD patterns of the \(\text{Cu}_{24}\text{Ga}_{1-x}\text{Sb}_{0.6}\text{Te}_{x} \); (b) Corresponding lattice constants \(a \) and \(c \) at different temperatures.