Supporting Information

Long-Term-Stable, Solution-Processable, Electrochromic Carbon Nanotubes/Polymer Composite for Smart Supercapacitor with Wide Working Potential Window

Tongtong Ye*, Ying Sun*, Xuan Zhao, Baoping Lin*, Hong Yang, Xueqin Zhang and Linxiang Guo*

School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, P. R. China

*Author to whom correspondence should be addressed
Email: sunyseu@seu.edu.cn (S.Y.), lbp@seu.edu.cn (L.B.)
Contents

1. 1HNMR spectra of 2,7-Dibromo-9-(8-bromooctyl)-9H-carbazol and polymer PBDTC in chloroform-d. .. S-3
2. Normalized FT-IR spectra of MWCNT-PBDTC and MWCNT-OH. S-4
3. The C1s XPS spectra of PBDTC and MWCNT-PBDTC. S-4
4. FE-SEM image of MWCNT-OH. ... S-5
5. Comparison of solubility of the samples in chloroform. S-5
6. Performance of symmetric supercapacitor device in Table 1. S-5
7. Leakage current and self-discharge curves of MWCNT-PBDTC device. S-6
8. In situ optical responses of device and the calculation of response times. S-6
Fig. S1a. 1H NMR spectra of 2,7-Dibromo-9-(8-bromoctyl)-9H-carbazol in chloroform-d.

Fig. S1b. 1H NMR spectra of PBDTC in chloroform-d.
Fig. S2. FT-IR spectra of MWCNT-PBDTC and MWCNT-OH.

Fig. S3. The C1s XPS spectra of PBDTC and MWCNT-PBDTC.
Fig. S4. FE-SEM image of MWCNT-OH.

Fig. S5. Comparison of solubility of the samples in chloroform: (a) MWCNT-PBDTC, (b) MWCNT-OH. The black dispersion shown in (a) is stable for at least 30 days. The concentration for each sample is 5 mg mL\(^{-1}\).

Table 1. Performance of symmetric supercapacitor device.

<table>
<thead>
<tr>
<th>E (W h kg(^{-1}))</th>
<th>P (W kg(^{-1}))</th>
<th>E (×10(^{-3}) mW h cm(^{-2}))</th>
<th>P (mW cm(^{-2}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>174.7</td>
<td>4800</td>
<td>17.47</td>
<td>0.48</td>
</tr>
<tr>
<td>148.2</td>
<td>7200</td>
<td>14.82</td>
<td>0.72</td>
</tr>
<tr>
<td>135.4</td>
<td>16800</td>
<td>13.54</td>
<td>1.68</td>
</tr>
<tr>
<td>129.9</td>
<td>36000</td>
<td>12.30</td>
<td>3.60</td>
</tr>
<tr>
<td>120.0</td>
<td>48000</td>
<td>12.00</td>
<td>4.80</td>
</tr>
</tbody>
</table>
Fig. S6. (a) Leakage current curve of MWCNT-PBDTC device charged at 2 mA to 4.8 V and kept at 4.8 V for 5000 s. (b) Self-discharge curve of MWCNT-PBDTC device after charging at 4.8 V for 15 min.

Fig. S7. In situ optical responses of device for 30 s per step measured at 465 nm and the calculation of response times.