Supplementary Information

Molecular self-assembly of a nanorod-like N-Li$_4$Ti$_5$O$_{12}$/TiO$_2$/C anode for superior lithium ion storage

Sainan Luoa,1, Pengcheng Zhanga,1, Tao Yuana,b,*, Jiafeng Ruana, Chengxin Penga,b, Yuepeng Panga,b, Hao Suna,b, Junhe Yanga,b, Shiyou Zhenga,b,*

a School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China

b Shanghai Innovation Institute for Materials, Shanghai 200444, China

* Corresponding author at: School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China

E-mail addresses: E-mail: yuantao@usst.edu.cn (T. Yuan), syzheng@usst.edu.cn (S. Zheng).

1 These authors contributed equally to this work.
Contents:

Figure S1. TGA curve for the NT-LTO/C composite in an air atmosphere with a heating rate of 10 °C min⁻¹.

Figure S2. TEM photographs of pristine LTO with mechanical mixing of anatase-TiO₂ and LiOH as reactants after calcination at 750 °C for 5 h in a N₂ atmosphere.

Figure S3. (a) CV curves from 0.2 to 10 mV s⁻¹; (b) analysis of b-value for anodic and cathodic peak currents; (c) The plots of ν¹/₂ vs i/ν¹/₂ used for calculating constants k₁ and k₂ at different potentials; (d) capacitive (red) and diffusion currents contributed to charge storage of NT-LTO/C at a scan rate of 1 mV s⁻¹.

Figure S4. The discharge and charge profiles for the pristine LTO electrode at various rates from 0.5 C to 100 C.

Figure S5. The relationship of the voltage vs. x in NT-LTO/C and LTO electrodes.

Figure S6. Real and imaginary parts of the complex impedance vs. ω⁻¹/₂ for the NT-LTO/C and LTO electrodes.

Figure S7. The corresponding cathode and anode curves during the charge/discharge process of LFP||pristine LTO cell.

Table S1. Refined structural parameters of Li₄Ti₅O₁₂ obtained from the two phase Rietveld refinement using X-ray powder diffraction data at room temperature. The symbols, g and U, represent the occupation and isotropic thermal parameters, respectively. The profile factor is R_p, and the weighted profile factor is R_wp.

Table S2. Ratio analysis of the peaks in the XPS spectrum of the NT-LTO/C composite

Table S3. Ti2p composition from XPS

Table S4. N1s composition from XPS

Table S5. Values of A, dE/dx and the diffusion coefficient D of NT-LTO/C and LTO electrodes at a discharge voltage of 2.0 V.
Figure S1

Figure S1 TGA curve for the NT-LTO/C composite in an air atmosphere with a heating rate of 10 °C min⁻¹.
Figure S2 TEM photographs of pristine LTO with mechanical mixing of anatase-TiO$_2$ and LiOH as reactants after the calcination at 750 °C for 5 h in a N$_2$ atmosphere.
Figure S3. (a) CV curves from 0.2 to 10 mV s\(^{-1}\); (b) analysis of \(b\)-value for anodic and cathodic peak currents; (c) The plots of \(v^{1/2}\) vs \(i/v^{1/2}\) used for calculating constants \(k_1\) and \(k_2\) at different potentials; (d) capacitive (red) and diffusion currents contributed to charge storage of NT-LTO/C at a scan rate of 1 mV s\(^{-1}\).

To investigate the pseudocapacitance performance of the NT-LTO/C electrode, the ion diffusion and charge storage kinetics of NT-LTO/C electrode are investigated by CV at various scan rates from 0.2 to 10 mV s\(^{-1}\) (Figure S3a). **Equation S1** describes the kinetic mechanism by the dependence of the current \((i)\) on the scan rate \((v)\).\(^1\)

\[i = av^b \quad \text{(Eq. S1)} \]
where, b value is an adjustable parameter, which represents the slope of the log(v)–log(i) plots. Typically, the slope of 0.5 (b=0.5) signifies a diffusion-controlled process, and the slope of 1 (b=1) suggests a capacitive-controlled behavior (also named surface Faradic redox reaction). As displayed in Figure S3b, the cathodic and anodic b values of NT-LTO/C anode in LIBs are 0.61 and 0.59 respectively, demonstrating that the ion storage mechanism of NT-LTO/C anode tends to both diffusion-controlled and capacitive-controlled processes. Moreover, the contribution ratios of diffusion-controlled processes and capacitive-controlled process are quantitatively separated through the method by Dunn and co-workers:3

\[i = k_1v + k_2v^{1/2} \]
(Eq. S2)

In Equation S2, \(k_1v \) and \(k_2v^{1/2} \) represent the surface capacitive and diffusion-controlled process, respectively.4,5 The current at a fixed potential (i) can be expressed as a combination of \(k_1v \) and \(k_2v^{1/2} \). By plotting \(i/v^{1/2} \) versus \(v^{1/2} \) (Figure S3c), one can determine \(k_1 \) and \(k_2 \) from the slope and the y-axis intercept point of a straight line, respectively. Comparing the shaded area \((k_1v) \) in Figure S3d, it can be found that \(~30.5\%\) of the total charge in the NT-LTO/C electrode is surface capacitive (red region) at a scan rate of 1 mV s\(^{-1}\). This result suggests that the NT-LTO/C electrode is dominated by pseudocapacitive nature during the charge/discharge process.
Figure S4 The discharge and charge profiles for the pristine LTO electrode at various rates from 0.5 C to 100 C.
Figure S5

(a) NT-LTO/C

(b) pristine LTO

Figure S5 The relationship of the voltage vs. x in NT-LTO/C and LTO electrodes.
Figure S6 Real and imaginary parts of the complex impedance vs. $\omega^{-1/2}$ for the NT-LTO/C and LTO electrodes.
Figure S7 The corresponding cathode and anode curves during the charge/discharge process of the LFP||pristine LTO cell.
Table S1 Refined structural parameters of Li$_4$Ti$_5$O$_{12}$ obtained from the two phase Rietveld refinement using X-ray powder diffraction data at room temperature. The symbols, g and U, represent the occupation and isotropic thermal parameters, respectively. The profile factor is R_p, the weighted profile factor is R_{wp}.

<table>
<thead>
<tr>
<th>Atom</th>
<th>site</th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>g</th>
<th>U</th>
</tr>
</thead>
<tbody>
<tr>
<td>Li</td>
<td>8a</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>1.000</td>
<td>0.0000</td>
</tr>
<tr>
<td>Li</td>
<td>16c</td>
<td>0.6250</td>
<td>0.6250</td>
<td>0.6250</td>
<td>0.1667</td>
<td>0.0000</td>
</tr>
<tr>
<td>Ti</td>
<td>16c</td>
<td>0.6250</td>
<td>0.6250</td>
<td>0.6250</td>
<td>0.8333</td>
<td>0.0000</td>
</tr>
<tr>
<td>O</td>
<td>32e</td>
<td>0.3890</td>
<td>0.3890</td>
<td>0.3890</td>
<td>1.0000</td>
<td>0.0000</td>
</tr>
</tbody>
</table>

$a=8.357$ Å $b=8.357$ Å $c=8.357$ Å $\alpha=\beta=\gamma=90^\circ$

<table>
<thead>
<tr>
<th>Atom</th>
<th>site</th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>g</th>
<th>U</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ti</td>
<td>4a</td>
<td>0.0000</td>
<td>0.7500</td>
<td>0.1250</td>
<td>1.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>O</td>
<td>8e</td>
<td>0.0000</td>
<td>0.7500</td>
<td>0.3333</td>
<td>1.0000</td>
<td>0.0000</td>
</tr>
</tbody>
</table>

$a=3.785$ Å $b=3.785$ Å $c=9.514$ Å $\alpha=\beta=\gamma=90^\circ$

R-factors and weight fraction

$R_{wp} = 9.77\%$ $R_p = 7.26\%$ $S = 1.5914$

Li$_4$Ti$_5$O$_{12}$: 95.48% TiO$_2$: 4.52%
Table S2 Ratio analysis of the peaks in the XPS spectrum of the NT-LTO/C composite

<table>
<thead>
<tr>
<th>Ratios (% at.)</th>
<th>Li</th>
<th>Ti</th>
<th>O</th>
<th>C</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>NT-LTO/C</td>
<td>11.3</td>
<td>36.6</td>
<td>38.7</td>
<td>11.0</td>
<td>2.4</td>
</tr>
<tr>
<td>Binding Energy (eV)</td>
<td>Ti(^{4+})2p(^{1/2})</td>
<td>Ti(^{3+})2p(^{1/2})</td>
<td>Ti(^{4+})2p(^{3/2})</td>
<td>Ti(^{3+})2p(^{3/2})</td>
<td></td>
</tr>
<tr>
<td>---------------------</td>
<td>----------------</td>
<td>----------------</td>
<td>----------------</td>
<td>----------------</td>
<td></td>
</tr>
<tr>
<td>Ratios (% at.)</td>
<td>14.41</td>
<td>14.57</td>
<td>47.96</td>
<td>23.06</td>
<td></td>
</tr>
</tbody>
</table>
Table S4 N1s composition from XPS

<table>
<thead>
<tr>
<th>Peaks</th>
<th>N4</th>
<th>N3</th>
<th>N2</th>
<th>N1</th>
<th>TiN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitrogen atom components</td>
<td>High-oxidation states-N</td>
<td>Protonated-N</td>
<td>Pyrrolic-N</td>
<td>Pyridinic-N</td>
<td>TiN</td>
</tr>
<tr>
<td>Binding Energy (eV)</td>
<td>401.3</td>
<td>400.3</td>
<td>399.5</td>
<td>398.81</td>
<td>397.5</td>
</tr>
<tr>
<td>Ratios (atomic %)</td>
<td>12.2</td>
<td>33.4</td>
<td>12.5</td>
<td>5.0</td>
<td>36.9</td>
</tr>
</tbody>
</table>

Table S5 Values of A, dE/dx and the diffusion coefficient D of NT-LTO/C and LTO electrodes at a discharge voltage of 2.0 V.

<table>
<thead>
<tr>
<th>Electrodes</th>
<th>A</th>
<th>dE/dx</th>
<th>D (cm2 s$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C-LTO</td>
<td>28.22</td>
<td>15.957</td>
<td>3.01×10$^{-12}$</td>
</tr>
<tr>
<td>LTO</td>
<td>163.22</td>
<td>7.422</td>
<td>1.94×10$^{-14}$</td>
</tr>
</tbody>
</table>

The chemical diffusion coefficients of Li$^+$ inside NT-LTO/C and LTO electrodes can be estimated from the impedance results. The following expression for Z_w was derived by solving Fick’s law:

$$Z_w = A\omega^{-1/2} - jA\omega^{-1/2} \quad \text{(Eq. S3)}$$

$$A = \frac{V_M(dE/dx)}{\sqrt{2zFD^{1/2}}a} \quad \text{(Eq. S4)}$$

where, ω is the frequency, $j = \sqrt{-1}$, and the pre-exponential factor A is a constant that contains a concentration independent chemical diffusion coefficient, as shown in Equation S4. V_M is the molar volume of LTO (45.73 cm3 mol$^{-1}$), dE/dx values are the slope of the NT-LTO/C and LTO electrode potential curves vs. x in Figure S5, z is the charge transfer number ($z=1$ in the lithium intercalation reaction), a is the electroactive surface area of the electrode, which is
1.13 cm² in our testing electrode, F is the Faraday constant, and D is the diffusion coefficient. **Figure S6** displays the dependence of the impedances on the frequencies of the NT-LTO/C and LTO electrodes. Both the real and imaginary parts of the impedance were found to be parallel to each other, and proportional to \(\omega^{-1/2} \). Based on the slope of the plot, the value of \(A \) was obtained. Since \(A \) is inversely proportional to the chemical diffusion coefficient, \(D \), as demonstrated in **Equation S4**, the larger \(A \), the slower the diffusion rate of Li⁺ in the solid matrix of the electrode should be. **Table S5** lists the values of the \(\frac{dE}{dx} \), \(A \) and \(D \) of NT-LTO/C and LTO electrodes. The chemical diffusion coefficients of the NT-LTO/C and LTO electrodes are \(3.01 \times 10^{-12} \text{ cm}^2 \text{ s}^{-1} \) and \(1.94 \times 10^{-14} \text{ cm}^2 \text{ s}^{-1} \), respectively.

References