Electronic Supplementary Information

Template-free solvothermal preparation of ternary hollow balloons as RuO$_2$-like efficient electrocatalysts for oxygen evolution reaction with superior stability

He Wang1, Jianhua Tang1, Yinle Li1, Hang Chu1, Yuancai Ge1, Robert Baines2, Pei Dong2, Pulickel M. Ajayan2, Jianfeng Shen1*, Mingxin Ye1*

1 Institute of Special Materials and Technology, Fudan University, 200433, Shanghai, China. E-mail: mxye@fudan.edu.cn

2 Department of Materials Science and NanoEngineering, Rice University, 6100 Main Street, Houston, TX 77005, USA.

*Corresponding author. Email: jfshen@fudan.edu.cn; mxye@fudan.edu.cn

Figure S1. Nyquist plots of 1h-FNSH, 4h-FNSH, 8h-FNSH and 16h-FNSH electrodes recorded at an applied potential of 0.5 V with a frequency range of 100 kHz to 100 mHz in 1 M KOH
Figure S2. XPS survey spectra (a) of FNSH and the XPS spectra of Fe 2p (b), Ni 2p (c), and S 2p (d) for FNSH.

Table S1. Quantification results of EDX of FNSH

<table>
<thead>
<tr>
<th>Sample</th>
<th>Concentration (at. %)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Fe</td>
</tr>
<tr>
<td>FNSH</td>
<td>15.11</td>
</tr>
</tbody>
</table>
Table S2. ICP-OES result of FNSH

<table>
<thead>
<tr>
<th>Sample</th>
<th>Concentration (μM)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Fe</td>
</tr>
<tr>
<td>FNSH</td>
<td>20.525</td>
</tr>
</tbody>
</table>

Figure S4. DLS result of 8h-FNSH.

Figure S5. XRD patterns of FNS obtained with reaction time 1 h, 4 h and 8 h.
Figure S6. SEM and the corresponding TEM images (inset in the SEM images) of FNS obtained with different reaction times (a) 12 h, (b) 16 h, (c) 32 h, (d) 48 h; varying ratios of water-glycol (e) 1:0, (f) 2:1, (g) 1:2, (h) 0:1; different reaction temperatures (i) 180 °C, (j) 200 °C; multiple amounts of L-cysteine (k) 0.04 mol/L, (l) 0.16 mol/L; Scale bars shown in all of the SEM and TEM images correspond to 2.0 um. XRD patterns of different FNS samples (m)
Figure S7. XRD pattern of FNSH/GA.

Figure S8. SEM images of FNSH/GA.
Figure S9. Raman spectrum of FNSH/GA.

Figure S10. XRD patterns of Ni$_{0.96}$S and Fe$_3$S$_4$.
Figure S11. SEM images of Ni$_{0.96}$S (a), Ni$_{0.96}$S/GA (b), Fe$_3$S$_4$ (c) and Fe$_3$S$_4$/GA (d).

Figure S12. polarization curves of FNSH/GA, Fe$_3$S$_4$/GA, NiS/GA at 5 mV s$^{-1}$
Figure S13. CV for FeNi$_2$S$_4$ under different reaction time, including (a) 1 h, (b) 4 h, (c) 8 h, (d) 16 h, with a scan rate of 0.05, 0.1, 0.15, 0.2, 0.25 and 0.3 V s$^{-1}$ in 1.0 M KOH at the potential from 0 to 0.5 V.

Figure S14. Durability tests for 8 h FNSH/GA at 10 mA cm$^{-2}$.
Figure S15. N\textsubscript{2} adsorption-desorption isotherms of different products under different reaction time, including 1 h, 2 h, 4 h, 8 h and 16 h.

Figure S16. SEM images of CuCo\textsubscript{2}S\textsubscript{4} (a) and CoNi\textsubscript{2}S\textsubscript{4} (b)

References: