Supporting Information

Nitrogen/Oxygen Co-doped Carbon Monolithic Electrode Derived from Melamine Foam for High-Performance Supercapacitors

Rui Zhang,a Xiangxia Jing,a Yanting Chu,b Lei Wang,a Wenjun Kang,a Denghu Wei,c Haibo Li,*a,d and Shenglin Xiong*b

aSchool of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, PR China

bKey Laboratory of the Colloid and Interface Chemistry Ministry of Education and School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, PR China

cSchool of Materials Science and Engineering, Liaocheng University, Liaocheng 252059, PR China

dDepartment of Chemical and Biomolecular Engineering, National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260, Singapore

*Correspondence and requests for materials should be addressed to H.B.L. (email: haiboli@mail.ustc.edu.cn) or to S.L.X. (email: chexsl@sdu.edu.cn).
Fig. S1 (a, b, c) SEM images, (d) TEM image, and (e) element mapping of NOCS-0.
Fig. S2 SEM and TEM images for (a, b, c) NOCS-1/20 and (d, e, f) NOCS-1/5.
Fig. S3 Peak-fitting XPS spectra of (a, d, g) C1s, (b, e, h) N1s, and (c, f, i) O1s for (a, b, c) NOCS-0, (d, e, f) NOCS-1/20, and (g, h, i) NOCS-1/5.
Fig. S4 CV curves for (a) NOCS-0, (b) NOCS-1/20, and NOCS-1/5 at different scan rates in 6.0 M KOH.
Fig. S5 CV curves for (a) NOCS-0, (c) NOCS-1/20, and (e) NOCS-1/5 at different scan rates in 0.5 M Na$_2$SO$_4$. Comparison of specific capacitances for (b) NOCS-0, (d) NOCS-1/20, and (f) NOCS-1/5 in 6.0 M KOH and 0.5 M Na$_2$SO$_4$.
Fig. S6 GCD curves for (a) NOCS-0, (b) NOCS-1/20, and NOCS-1/5 at different current densities (0.5, 1.0, 2.0, 4.0, 6.0, 8.0, 10, 15, and 20 A g$^{-1}$) in 6.0 M KOH solution.
Fig. S7 (a) N$_2$ adsorption/desorption isotherms and (b) BJH pore size distributions for NOCS-0, NOCS-1/20, NOCS-1/10, and NOCS-1/5.

Table S1. Pore structure parameters from N$_2$ adsorption/desorption isotherms.

<table>
<thead>
<tr>
<th>Samples</th>
<th>aS$_{\text{total}}$ m2 g$^{-1}$</th>
<th>bS$_{\text{meso+macro}}$ m2 g$^{-1}$</th>
<th>S$_{\text{micro}}$ m2 g$^{-1}$</th>
<th>cV$_{\text{total}}$ cm3 g$^{-1}$</th>
<th>dV$_{\text{micro}}$ cm3 g$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOCS-0</td>
<td>28.6</td>
<td>28.6</td>
<td>0</td>
<td>0.054</td>
<td>0</td>
</tr>
<tr>
<td>NOCS-1/20</td>
<td>126.5</td>
<td>54.6</td>
<td>71.9</td>
<td>0.105</td>
<td>0.036</td>
</tr>
<tr>
<td>NOCS-1/10</td>
<td>164.4</td>
<td>50.7</td>
<td>113.7</td>
<td>0.113</td>
<td>0.057</td>
</tr>
<tr>
<td>NOCS-1/5</td>
<td>129.0</td>
<td>39.8</td>
<td>89.2</td>
<td>0.090</td>
<td>0.044</td>
</tr>
</tbody>
</table>

aThe total surface area (S_{total}) and the surface area of micro-pores (S_{micro}) were obtained from multipoint Brunauer–Emmett–Teller (BET) plots and V–t plots, respectively. bThe surface area of the meso-/macro-pores ($S_{\text{meso+macro}}$) was acquired by subtracting S_{micro} from S_{total}. cThe total pore volume (V_{total}) was determined at $P/P_0 = 0.98$, and dthe micro-pore volume (V_{micro}) was calculated from the V–t plot.
Fig. S8 Galvanostatic charge-discharge curves of an all-solid-state supercapacitor assembled by NOCS-0 monolithic electrodes (current densities: 0.5, 1.0, 2.0, 4.0, and 6.0 A g$^{-1}$).
Fig. S9 The photograph of a red LED light illuminated by three NOCS-1/10 supercapacitors in series.