Supporting Information

A full overview of international standards assessing the long-term stability of perovskite solar cells Philippe Holzhey, Michael Saliba*

*michael.saliba@unifr.ch, miliba@gmail.com

Designed for	Name	
Terrestrial	IEC 61215-1 (Vers.	Design qualification and type approval – Part 1: Test
photovoltaic	2016)	requirements
modules		
Crystalline silicon	IEC 61215-1-1 (Vers.	Special requirements for testing of crystalline silicon
	2016)	photovoltaic modules
CdTe	IEC 61215-1-2	Special requirements for testing of thin-film CdTe
	(Vers. 2016)	based photovoltaic modules
Amorphous silicon	IEC 61215-1-3 (Vers.	Special requirements for testing of thin-film
	2016)	amorphous silicon based photovoltaic modules
CIGS	IEC 61215-1-4 (Vers.	Special requirements for testing of thin-film CIGS
	2016)	based photovoltaic modules
Crystalline solar	IEC 61215-2 (Vers.	Design qualification and type approval - Part:2 Test
cells	2016)	procedures
Photovoltaic	IEC 62716 (Vers.	Ammonia corrosion testing
modules	2013)	
Crystalline silicon	IEC TS 62804-1 (Vers.	Test methods for the detection of potential-induced
	2015)	degradation

Table S1 Summary of the reviewed standards for photovoltaics

Table S2 Summary of all test performed in the IEC 61215. Copyright © 2016 IEC Geneva, Switzerland. www.iec.ch

Test	Conditions
Visual inspection	Visual inspection to detect any visual defects that may cause a
	risk loss, including power output.
Maximum power	Measurement of I-V curves at a specific set of irradiance and
determination	temperature between 25 and 50 °C and an irradiance between
	700 W/m ² and 1100 W/m ² using natural sunlight or a class BBA
	or better simulator
Insulation test	For modules with a system voltage greater than 50 V d.c.,
	dielectric withstand at 1 000 V d.c. + twice the maximum system
	voltage for 1 min, followed by insulation resistance
	measurement at 500 V d.c. or maximum systems voltage for 2
	min. For modules with a system voltage less than 50 V d.c., the
	test voltages are 500 V d.c.
Measurement of	Temperature coefficients for the current (α), voltage (β) and
temperature coefficients	peak power (δ). See IEC 60891 for more Information and IEC
	60904-10 for temperature coefficients at different irradiance
	levels.
Measurement of nominal	Module operating near maximum power point
module operating	Total solar irradiance: 800 W/m ²
temperature	Ambient temperature: 20 °C
temperature	Wind speed: 1 m/s
Performance at standard	Cell temperature of 25 °C at STC and module temperature at
test condition and	
	nominal module operating temperature
nominal module	Irradiance: 1000 W/m ² and 800 W/m ² with IEC 60904-3
operating temperature	reference solar spectral irradiance distribution
Performance at low	Cell temperature: 25 °C
irradiance	Irradiance: 200 W/m ² with IEC 60904-3 reference solar spectral
	distribution
Outdoor exposure test	60 kWh/m ²
Hot-spot endurance test	Exposure to 1000 W/m ² irradiance in worst-case hot-spot
	condition
UV preconditioning	15 kWh/m ² total UV irradiation in the wavelength range from
	280 nm to 400 nm with 3 % to 10 % UV irradiance in the
	wavelength range from 280 nm to 320 nm at 60 \pm 5 °C
Thermal cycling test	50 or 200 cycles from -40 °C to 85 °C with current as per
	technology specific part up to +80 °C
Humidity freeze test	10 cycles from 85 °C, 85 % RH to -40 °C with circuitry continuity
	monitoring
Damp heat test	1000 h at +85 °C, 85 % RH
Robustness of	Test of junction box retention and cord anchorage
termination	
Wet leakage current test	Test voltage increase at a rate not exceeding 500 V/s to 500 V or
	the maximum system voltage for the module, whichever is
	greater. Maintain the voltage at the level for 1 min.
Static mechanical load	Three cycles of uniform load specified by the manufacturer,
test	applied for 1 h to front and back surfaces in turn.
	Minimum test load: 2400 Pa

Hail test	25 mm diameter ice ball at 23,0 m/s, directed at 11 impact locations
Bypass diode thermal test	Bypass diode thermal test:
	1 h at I _{sc} and 75 °C
	1 h at 1,25 times I _{sc} and 75 °C
	Bypass diode functionality test
	At 25 °C perform voltage and current measurements
Stabilization	Three consecutive maximum output power measurements P1,
	P2 and P3. Output power is determined under standard test
	conditions.

Table S3 Locations to be shoot with ice balls as described in the hail test. Some locations may require larger ice balls which are given in Table S4. Copyright © 2016 IEC Geneva, Switzerland. www.iec.ch

Shot No.	Location
1	Any corner of the module window, not more than one radius from the module
	edge.
2	Any edge of the module, not more than one radius from the module edge.
3, 4	Over the circuit near the interconnects (i.e. cell interconnects and bus ribbons).
5, 6	Over edges of the circuit (e.g. individual cells).
7, 8	On the module window, not more than half diameter of ice ball from one of the
	points at which the module is mounted to the supporting structure.
9, 10	On the module window, at points farthest from the points selected above.
11	Any points which may prove especially vulnerable to hail impact like over the
	junction box.

Table S4 Ice ball size, masses, and velocity. Hail prone locations may require larger sizes therefore different sizes are given. Copyright © 2016 IEC Geneva, Switzerland. www.iec.ch

Diameter (mm)	Mass (g)	Test velocity (m/s)
25	7.53	23.0
35	20.7	27.2
45	43.9	30.7
55	80.2	33.9
65	132.0	36.7
75	203.0	39.5

Supplementary Note 1 - Detailed IEC 61215 test

The degradation after each sequence shown in Figure 2 should not be more than 5% times a reproducibility factor that is technology specific. Following equation is used to determine stable modules:

$$P_{max}(after the test sequence) \ge 0.95 P_{max}(initial)(1 - r)$$

r is the reproducibility of the modules which is determined for each certification. r should be lower than 2% for amorphous silicon, CIGS, CdTe and lower than 1% for crystalline silicon. r is verified by comparing the control modules from sequence A after the initial and after the final stabilization, which is measured after completing all tests. If r exceeds the technology specific limit for the control module, the technology-specific limit for r is taken.

References

- R. Roesch, T. Faber, E. Von Hauff, T. M. Brown, M. Lira-Cantu and H. Hoppe, Procedures and practices for evaluating thin-film solar cell stability, *Adv. Energy Mater.* (2015).; DOI:10.1002/aenm.201501407
- 2.M. Köntges, S. Kurtz, C. E. Packard, U. Jahn, K. Berger, K. Kato, T. Friesen, H. Liu and M. Van Iseghem, *Review of Failures of Photovoltaic Modules, IEA-Photovoltaic Power Syst. Program.*; DOI:978-3-906042-16-9
- 3.M. O. Reese, S. A. Gevorgyan, M. Jørgensen, E. Bundgaard, S. R. Kurtz, D. S. Ginley, D. C. Olson, M. T. Lloyd, P. Morvillo, E. A. Katz, A. Elschner, O. Haillant, T. R. Currier, V. Shrotriya, M. Hermenau, M. Riede, K. R. Kirov, G. Trimmel, et al., Consensus stability testing protocols for organic photovoltaic materials and devices, *Sol. Energy Mater. Sol. Cells* (2011).; DOI:10.1016/j.solmat.2011.01.036