Supporting information

Mesoporous carbon matrix confinement synthesis of ultrasmall WO_3 nanocrystals for lithium ion batteries

Changyao Wang,a Yujuan Zhao,a Lili Zhou,b Yang Liu,a Wei Zhang,a Zaiwang Zhao,a
Wael N. Hozzein,c Hind M. S. Alharbi,d Wei Li*,a and Dongyuan Zhao*,a

a Laboratory of Advanced Materials, Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, iChEM and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China

b Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, P. R. China

c Bioproducts Research Chair, Zoology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia;

d Biology Department, College of Sciences, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia

* Corresponding authors: Dongyuan Zhao (D.Y.Z); Wei Li (W.L.);

E-mail addresses: dyzhao@fudan.edu.cn; weilichem@fudan.edu.cn
Figure S1. 1H NMR spectra of (A) PEO-Br; (B) the synthesized diblock copolymer poly(ethylene oxide)-block-polystyrene (PEO$_{117}$-b-PS$_{156}$).
Figure S2. The gel permeation chromatograph (GPC) trace of the synthesized diblock copolymer poly(ethylene oxide)-block-polystyrene (PEO$_{117}$-b-PS$_{156}$).
Figure S3. Scanning transmission microscopy (STEM) image (a) and EDX mapping images of W (b), O (c), C (d) elements of the ordered mesoporous carbon/\text{WO}_3 (OMC-WO_3) composites obtained after pyrolysis at 550 °C in N\textsubscript{2}.
Figure S4. The Raman spectrum of the ordered mesoporous carbon/WO$_3$ (OMC-WO$_3$) composites obtained after pyrolysis at 550 °C in N$_2$. Peaks at 1325 and 1587 cm$^{-1}$ can be attributed to the D and G bands of sp^3 and sp^2 carbon, respectively.
Figure S5. The TGA curve of the ordered mesoporous carbon/WO$_3$ (OMC-WO$_3$) composites obtained after pyrolysis at 550 °C in N$_2$ with a heating rate of 5 °C/min from 50 to 900 °C in air atmosphere. Approximately 16% weight loss is observed between 100 and 600 °C, which is attributed to the decomposition of carbon species in the OMC-WO$_3$ composites.
Figure S6. The XPS survey spectra (a) and high-resolution W 4f (b), O 1s (c), and C 1s (d) spectra of the ordered mesoporous carbon/WO$_3$ (OMC-WO$_3$) composites obtained after pyrolysis at 550 °C in N$_2$.
Figure S7. The XRD pattern of the ordered mesoporous carbon (OMC) obtained after removal WO₃ nanocrystals from the ordered mesoporous carbon/WO₃ (OMC-WO₃) composites by HF etching.
Figure S8. The EDX spectrum of the ordered mesoporous carbon (OMC) obtained after removal WO$_3$ nanocrystals from the ordered mesoporous carbon/WO$_3$ (OMC-WO$_3$) composites by HF etching.
Figure S9. (a) Nitrogen-sorption isotherms and (b) pore-size distribution curve of the ordered mesoporous carbon (OMC) obtained after removal WO$_3$ nanocrystals from the ordered mesoporous carbon/WO$_3$ (OMC-WO$_3$) composites by HF etching.
Figure S10. The SAXS patterns of the amorphous ordered mesoporous carbon/WO$_3$ (AOMC-WO$_3$, a), mesoporous carbon/WO$_3$ (MC-WO$_3$, b) and WO$_3$-nanowire/carbon (WO$_3$-NW-C, c) composites obtained after pyrolysis at 500, 600 and 650 °C in N$_2$, respectively.
Figure S11. The XRD patterns of the amorphous ordered mesoporous carbon/WO$_3$ (AOMC-WO$_3$, a), mesoporous carbon/WO$_3$ (MC-WO$_3$, b) and WO$_3$-nanowire/carbon (WO$_3$-NW-C, c) composites obtained after pyrolysis at 500, 600 and 650 °C in N$_2$, respectively.
Figure S12. (a) Nitrogen-sorption isotherms and (b) pore-size distribution curve of the amorphous ordered mesoporous carbon/WO$_3$ (AOMC-WO$_3$), mesoporous carbon/WO$_3$ (MC-WO$_3$) and WO$_3$-nanowire/carbon (WO$_3$-NW-C) composites obtained after pyrolysis at 500, 600 and 650 °C in N$_2$, respectively.
Figure S13. TEM image of the mesoporous WO$_3$ obtained after pyrolysis at 550 °C without addition of resols.