## Ultrathin IrRu Nanowires Network with high performance and durability for

## Hydrogen Oxidation Reaction in alkaline anion exchange membrane fuel cell

Bowen Qin <sup>a,b</sup>, Hongmei Yu <sup>a,\*</sup>, Xueqiang Gao <sup>a,b</sup>, Dewei Yao<sup>a,b</sup>, Yinye Sun<sup>a,b</sup>, Wei Song<sup>a</sup>, Baolian Yi <sup>a</sup>, and Zhigang Shao <sup>a</sup>

<sup>a</sup> Fuel Cell System and Engineering Laboratory, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, PR China

<sup>b</sup> University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100039, PR China.

\*Corresponding Author: Telephone: +86 411 84379051; Fax: +86 411 84379185; E-mail: hmyu@dicp.ac.cn; zhgshao@dicp.ac.cn



Fig S1. SEM and Mapping of (a<sub>1</sub>) Ir<sub>2</sub>Ru<sub>1</sub> NWs /C and (a<sub>2</sub>) EDS analysis, (b<sub>1</sub>) Ir<sub>1</sub>Ru<sub>1</sub> NWs /C and (b<sub>2</sub>) EDS analysis (c<sub>1</sub>) Ir<sub>1</sub>Ru<sub>2</sub> NWs /C and (c<sub>2</sub>) EDS analysis (d<sub>1</sub>) Ir<sub>1</sub>Ru<sub>3</sub> NWs /C and (d<sub>2</sub>) EDS analysis



Fig S2. XPS spectra of Ir 4f for (a) Ir<sub>2</sub>Ru<sub>1</sub> NWs/C, (b) Ir<sub>1</sub>Ru<sub>1</sub> NWs/C,(c) Ir<sub>1</sub>Ru<sub>2</sub> NWs/C,(d) Ir<sub>1</sub>Ru<sub>3</sub> NWs/C.



Fig S3. TEM images and the corresponding size distribution diagrams of  $Ir_2Ru_1$  NWs ( $a_1$  and  $a_2$ ), I $r_1Ru_2$  NWs ( $b_1$  and  $b_2$ ) and I $r_1Ru_3$  NWs ( $c_1$  and  $c_2$ ).



Fig S4. CO-stripping voltammetry for of Ir<sub>2</sub>Ru<sub>1</sub> NWs (a), Ir<sub>1</sub>Ru<sub>2</sub> NWs (b) and Ir<sub>1</sub>Ru<sub>3</sub> NWs (c).



Fig S5. Cyclic voltammograms of Ir<sub>2</sub>Ru<sub>1</sub> NWs (a), Ir<sub>1</sub>Ru<sub>2</sub> NWs (b) and Ir<sub>1</sub>Ru<sub>3</sub> NWs (c) and the corresponding ECSA (d) before and after half-cell-ADTs .



Fig S6. Contact angle of GDE with (a) Pt/C and (b) Ir<sub>1</sub>Ru<sub>1</sub> NWs /C as anode catalysts

| catalys | Nominal  | Composition from EDS analysis |           |             | Composition from ICP analysis |        |             |
|---------|----------|-------------------------------|-----------|-------------|-------------------------------|--------|-------------|
| t       | Ir:Ru    | Ir                            | Ru (wt %) | Ir:Ru       | Ir                            | Ru     | Ir:Ru       |
|         | (atomic) | (wt %)                        |           | (atomic)    | (wt %)                        | (wt %) | (atomic)    |
|         | 2:1      | 15.96                         | 4.93      | 60.21:39.79 | 13.30                         | 4.54   | 60.63:39.37 |
| IrRu    | 1:1      | 14.99                         | 6.68      | 51.05:48.95 | 14.31                         | 6.79   | 52.55:47.45 |
| NWs/C   | 1:2      | 9.88                          | 9.55      | 32.94:67.06 | 8.96                          | 9.41   | 33.37:66.63 |
|         | 1:3      | 8.47                          | 11.67     | 25.89:74.11 | 7.33                          | 10.87  | 26.16:73.84 |

 Table S1.
 The compositions of four different IrRu NWs/C catalysts.

 Table S2 Exchange current density, mass activity@50mV, Specific activity @50mV, for the HOR in base electrolytes on different electrocatalytic materials.

| Material   | Experiment         | Method | i <sub>0</sub>        | Mass                 | Specific                            |      |
|------------|--------------------|--------|-----------------------|----------------------|-------------------------------------|------|
|            | Conditions         |        | (mAcm <sub>meta</sub> | activity@            | activity@50                         | Ref. |
|            |                    |        | l <sup>-2</sup> )     | 50mV                 | mV                                  |      |
|            |                    |        |                       | (A g <sup>-1</sup> ) | (mA                                 |      |
|            |                    |        |                       |                      | cm <sub>metal</sub> <sup>-2</sup> ) |      |
| Pt (110)   | 0.1 M KOH, 25      | micro  | 0.7                   |                      | 1.0                                 | 1    |
|            | °C,                |        |                       |                      |                                     |      |
| Pt (110)   | 0.1 M KOH, 25      | micro  | 0.05                  |                      | 0.068                               | 1    |
|            | °C,                |        |                       |                      |                                     |      |
| Pt(111)    | 0.1 M KOH, 25      | micro  | 0.04                  |                      | 0.068                               | 1    |
|            | °C,                |        |                       |                      |                                     |      |
| 46% Pt/C   | 0.1 M KOH, 25 °C   | micro  | 0.05                  |                      | 0.34                                | 2    |
| (Tanaka)   |                    |        |                       |                      |                                     |      |
| 50% Ru/C   | 0.1 M KOH, 25 °C   | micro  | 0.030                 |                      |                                     | 3    |
| (2.2 nm)   |                    |        |                       |                      |                                     |      |
| 50% Ru/C   | 01MKOH 25°C        | micro  | 0.043                 |                      |                                     | 3    |
| (2.4  nm)  | 0.1 11 11011, 20 0 |        | 0.015                 |                      |                                     | 5    |
| (2.1 mm)   |                    |        |                       |                      |                                     |      |
| 50% Ru/C   | 0.1 M KOH, 25 °C   | micro  | 0.063                 | 162                  | 0.64                                | 3    |
| (3.1 nm)   |                    |        |                       |                      |                                     |      |
| 50% Ru/C   | 0.1 M KOH, 25 °C   | micro  | 0.056                 |                      |                                     | 3    |
| (3.4 nm)   |                    |        |                       |                      |                                     |      |
| 500 ( D /G |                    |        | 0.044                 |                      |                                     | 2    |
| 50% Ru/C   | 0.1 M KOH, 25 °C   | micro  | 0.044                 |                      |                                     | 3    |
| (3.9 nm)   |                    |        |                       |                      |                                     |      |

| 50% Ru/C                        | 0.1 M KOH, 25 °C | micro | 0.045 |       |       | 3    |
|---------------------------------|------------------|-------|-------|-------|-------|------|
| (4.1 nm)                        |                  |       |       |       |       |      |
| 50% Ru/C                        | 0.1 M KOH, 25 °C | micro | 0.046 |       |       | 3    |
| (5.1 nm)                        |                  |       |       |       |       |      |
| 50% Ru/C                        | 0.1 M KOH, 25 °C | micro | 0.038 |       |       | 3    |
| (6.6 nm)                        |                  |       |       |       |       |      |
| 20% Ir/C                        | 0.1 M NaOH, 40   | micro | 0.38  | 448.4 | 0.76  | 4    |
| (Premetek)                      | °C               |       |       |       |       |      |
| 20% Ir/C                        | 0.1 M KOH, 20 °C |       |       | 313   | 0.49  | 5    |
| (Premetek)                      |                  |       |       |       |       |      |
| Pt/C                            | 0.1 M KOH, 25 °C | micro | 0.107 | 338   | 0.712 | This |
|                                 |                  |       |       |       |       | work |
| Ir <sub>1</sub> Ru <sub>1</sub> | 0.1 M KOH, 25 °C | micro | 0.126 | 1416  | 2.682 | This |
| NWs/C                           |                  |       |       |       |       | work |

## References:

- 1. N. M. Markovic, S. T. Sarraf, H. A. Gasteiger and P. N. Ross, *Journal of the Chemical Society-Faraday Transactions*, 1996, **92**, 3719-3725.
- 2. G. Couturier, D. W. Kirk, P. J. Hyde and S. Srinivasan, *Electrochimica Acta*, 1987, **32**, 995-1005.
- 3. J. Ohyama, T. Sato, Y. Yamamoto, S. Arai and A. Satsuma, *Journal of the American Chemical Society*, 2013, **135**, 8016-8021.
- 4. J. Durst, A. Siebel, C. Simon, F. Hasché, J. Herranz and H. A. Gasteiger, *Energy & Environmental Science*, 2014, 7, 2255.
- 5. J. Zheng, Z. Zhuang, B. Xu and Y. Yan, *Acs Catalysis*, 2015, **5**, 4449-4455.