Electronic Supplementary Information

3D Nanoporous Ni/V₂O₃ Hybrid Nanoplate Assemblies for Highly Efficient Electrochemical Hydrogen Evolution

Mei Ming,^{*a,b*} Yuling Ma,^{*a,b*} Yun Zhang,^{*a,b,*} Lin-Bo Huang,^{*b*} Lu Zhao,^{*b*} Yu-Yun Chen,^{*b*} Xing Zhang,^{*b*} Guangyin Fan,^{*a*,} and Jin-Song Hu^{*b*,}*

- a. College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China. Email: zhangyun@sicnu.edu.cn; fanguangyin@sicnu.edu.cn
- b. Beijing National Research Center for Molecular Sciences, CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. Email: hujs@iccas.ac.cn

This file includes Fig. S1-S15 and Table S1-S3.

Fig. S1. (a-b) SEM images of Ni-V-O precursor.

Fig. S2. (a) STEM image and EDS elemental mapping images of (b) Ni, (c) V, and (d) O for Ni-V-O precursor.

Fig. S3. (a-d) SEM images of Ni/V₂O₃ (Ni/V₂O₃-400).

Fig. S4. EIS Nyquist plots at the overpotential of 300 mV for Ni/V₂O₃, precursor and Ni foam.

Fig. S5. (a) Polarization curves, (b) corresponding Tafel plots. (c) EIS Nyquist plots at the overpotential of 350 mV for commercial Ni powder, V₂O₃ powder, and its mixture.

Although the commercial Ni/V₂O₃ composite exhibits a lower Tafel slope than commercial Ni powder, it still shows the smallest onset potential (-0.08 V) among three catalysts. This suggests that the intrinsic activity of commercial Ni/V₂O₃ composite is higher than both commercial Ni and V₂O₃ since the onset potential is directly dependent on the intrinsic activity of active sites. Additionally, the R_{ct} of commercial Ni/V₂O₃ composite is smaller than both commercial Ni and V₂O₃, agreeing with its best intrinsic electrocatalytic activity for HER. Basis on these results, it is reasonable to believe that there are synergistic effects between Ni and V₂O₃ for HER.

Fig. S6. (a) SEM image and (b) XRD pattern of Ni/V₂O₃ after stability test.

Fig. S7. (a-b) SEM images of Ni/V_2O_3 -300.

Fig. S8. (a-b) SEM images of Ni/V_2O_3 -500.

Fig. S9. CV curves measured at different scan rates from 10 to 80 mV s⁻¹ in 1 M KOH for Ni/V₂O₃ samples annealed at different temperatures: (a) Ni/V₂O₃-300, (b) Ni/V₂O₃-400, and (c) Ni/V₂O₃-500.

Fig. S10. The capacitive current plots as a function of scan rates.

Fig. S11. Comparison of Ni 2p XPS spectra between Ni/V₂O₃-400 and Ni/V₂O₃-300.

As seen in this figure, the intensity of Ni^0 peak for Ni/V_2O_3 -300 is much lower than Ni/V_2O_3 -400, indicating the lower content of metallic Ni in the former which could be due to the incomplete decomposition of the precursor at 300 °C.

Fig. S12. (a-b) SEM images of Ni/V₂O₃ sample prepared using 0.4 mmol VCl₃.

Fig. S13. (a-b) SEM images of Ni/V₂O₃ sample prepared using 0.8 mmol VCl₃.

Fig. S14. (a-b) SEM images of Ni/V₂O₃ sample prepared using 1.2 mmol VCl₃.

Fig. S15. (a-b) SEM images of Ni/V₂O₃ sample prepared using 2.0 mmol VCl₃.

Sample	η@10 mA cm ⁻² [mV]	Tafel Slope [mV dec ⁻¹]	Reference
Ni/V ₂ O ₃	61	79.7	This Work
NiO/Ni-CNT	<100	82	<i>Nat. Commun.</i> 2014, <i>5</i> , 4695
NiCu@C	74	94.5	<i>Adv. Energy Mater.</i> 2018 ,8, 1701759
Ni-Mn ₃ O ₄	91	110	<i>Chem. Commun.</i> 2016 , <i>52</i> , 10566
NiSe/NF	96	120	Angew. Chem. Int. Ed. 2015 , 127, 9483
NiP/Ni	130	58.5	<i>Adv. Funct. Mater.</i> 2016 , 26, 3314
Ni-NiO/N-rGO	260	67	<i>Adv. Funct. Mater.</i> 2015 , 25, 5799
NiS ₂ HMS	219	157	J. Mater. Chem. A 2017, 5, 20985

Table S1. HER performance of recently reported Ni-based catalysts in 1 M KOH

Sample	$R_{s}\left(\Omega ight)$	$R_{ct}(\Omega)$
Ni/V ₂ O ₃	1.87	4.27
Precursor	1.91	7.25
Ni foam	1.92	18.5
Mixed Ni+V ₂ O ₃	2.89	8.09
Ni powder	2.91	15.4
V ₂ O ₃ powder	2.95	31.4

Table S2. EIS results of different samples

Table S3. V/Ni ratios for Ni/V_2O_3 samples prepared using different amount of VCl_3

Samples prepared with different amount of VCl ₃	V/Ni Ratio (XPS)
Ni/V ₂ O ₃ -0.4	1.33
Ni/V ₂ O ₃ -0.8	2.33
Ni/V ₂ O ₃ -1.2	3.55
Ni/V ₂ O ₃ -1.6	3.74
Ni/V ₂ O ₃ -2.0	4.00