One-Step, Room Temperature Generation of Porous and Amorphous Cobalt Hydroxysulfides from Layered Double Hydroxides for Superior Oxygen Evolution Reactions

Yifan Zeng[†], Lanjun Chen[†], Ru Chen[†]*, Yanyong Wang, Chao Xie, Li Tao, Liangliang Huang and Shuangyin Wang*

State Key Laboratory of Chem/Bio-Sensing and Chemometrics, Provincial Hunan Key Laboratory for Graphene Materials and Devices, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R.China.

E-mail: shuangyinwang@hnu.edu.cn; and chenru@hnu.edu.cn

Figure S1. The SEM images of (A) CoAl-LDH, (B) OE-CoAl-LDH, (C) OS-CoAl-LDH (D) PA-CoS_x(OH)_y

Figure S2. The EDX spectrums of (A) CoAl-LDH, (B) OE-CoAl-LDH, (C) OS-CoAl-LDH (D) PA-CoS_x(OH)_y

Figure S3. (A) The low-resolution TEM image of the $PA-CoS_x(OH)_y$ and corresponding elemental mapping images of (B) Co, (C) S, and (D) O in the $PA-CoS_x(OH)_y$.

Figure S4. (A) N_2 adsorption-desorption isotherms of CoAl-LDH, $PA-CoS_x(OH)_{y_1}$ OE-CoAl-LDH and OS-CoAl-LDH. (B) Corresponding BJH pore size distribution of CoAl-LDH, $PA-CoS_x(OH)_{y_1}$ OE-CoAl-LDH and OS-CoAl-LDH. (C) The OER performance of the CoAl-LDH, $PA-CoS_x(OH)_{y_1}$ OE-CoAl-LDH and OS-CoAl-LDH and OS-CoAl-LDH after BET normalization in 1.0M KOH.

Figure S5. The XPS spectrums. (A) Co $2P_{3/2}$ of OE-CoAl-LDH, (B) O 1s of OE-CoAl-LDH (C) Co $2P_{3/2}$ of OS-CoAl-LDH (D) O 1s of OS-CoAl-LDH

Figure S6.LSV polarization curves of PA-CoS_x(OH)_y/NF

Figure S7. Tested the electrochemical surface area (ECSA) of CoAl-LDH, OE-CoAl-LDH, OS-CoAl-LDH and PA-CoS_x(OH)_y in 1.0 M KOH solution. (A) Cyclic voltammetry curves of (A) CoAl-LDH, (B) OE-CoAl-LDH, (C) OS-CoAl-LDH and (D) PA-CoS_x(OH)_y with different scanning rates. The capacitive current measured at 1.25 V vs RHE was plotting as a function of scan rate (E) CoAl-LDH, OE-CoAl-LDH, OS-CoAl-LDH and PA-CoS_x(OH)_y.

Figure S8. The OER performances of those samples with different Co:Al ratios were treated in mixed solution of 5 M NaOH and 3 M Na_2S .

Figure S9. The SEM images of the CoAl-LDH nanosheets treatment conditions with different concentrations of NaOH (A) 2 M, (B) 8M, and (C) 10 M.

Figure S10. The SEM images of the CoAl-LDH nanosheets treatment conditions with different concentrations of Na_2S (A) 1 M, (B) 2M, and (C) 5 M.

Figure S11. (A) The OER performances of the nanosheets treatment conditions with different concentrations of NaOH. (B) The OER performances of the nanosheets treatment conditions with different concentrations of Na₂S.

Figure S12.The OER performances of those samples treated at different times in mixed solutions of 5M NaOH and 3 M Na_2S .

	Co (atom	Al (atom	S (atom	O (atom	The element	The
Materials	percentage	percentage	percentage	percentage	mole ratio of	element
	content, %)	content, %)	content, %)	content, %)	Co/Al	mole ratio
						of Co/S
CoAl-LDH	18.65	5.04	-	65.35	3.70	-
5M	17.31	0.14	15.08	24.63	123.64	1.15
NaOH+3M						
Na ₂ S						
5M NaOH	15.64	0.46	-	39.81	34.00	-
3M Na ₂ S	7.51	0.3	12.28	22.33	25.03	0.61

Table S1. The element analysis of the CoAl-LDH, OE-CoAl-LDH, OS-CoAl-LDH and PA-CoS_x(OH)_y

Electrocatalyst	Electrolyte solution	Current density (mA cm ⁻²)	Overpotential at the corresponding Current density (mV)	Reference
PA-CoS _x (OH) _y	1M KOH	10	320	
PA-CoS _x (OH) _y /NF	1M KOH	10	261	THIS WORK
Co-S/Ti	1М КОН	10	361	[1]
Bulk CoS ₂	1М КОН	10	480	[2]
CoOx film	1M KOH	10	403	[3]
CoCo LDH	1М КОН	10	393	[4]
Co-P film	1М КОН	10	345	[5]
Co-C ₃ N ₄ /CNT	1M KOH	10	380	[6]
Ni–Co Double Hydroxides Nanocage	1М КОН	10	350	[7]
NiCo ₂ O ₄ nanowire/Ti	1M KOH	10	360	[8]
Co ₃ S ₄ -L	1М КОН	10	360	[9]
CoS2/N,S-GO	1М КОН	10	380	[10]

Table S2.Comparison of OER performance for $PA-CoS_x(OH)_y$ with other Co-based materials in 1.0M KOH.

Table S3. The element analysis of the treatment of CoAl-LDH with different sulfuration time.

	Со	Al (atom	S (atom	O (atom	The
Materials	(atom	percentage	percentage	percentage	element
	percenta	content, %)	content, %)	content, %)	mole ratio
	ge				of Co/S
	content,				
	%)				
5MNaOH+3M	11.26	0.33	8.93	59.04	1.26
Na ₂ S - 12 h					
5MNaOH+3M	17.31	0.14	15.08	24.63	1.15
Na ₂ S - 24 h					
5MNaOH+3M	8.64	0.14	16.46	36.76	0.52
Na ₂ S - 36h					

Reference

- 1. T. Liu, Y. Liang, Q. Liu, X. Sun, Y. He and A. M. Asiri, *Electrochemistry Communications*, 2015, **60**, 92-96.
- 2. P. Cai, J. Huang, J. Chen and Z. Wen, *Angewandte Chemie*, 2017, **56**, 4858-4861.
- L. Trotochaud, J. K. Ranney, K. N. Williams and S. W. Boettcher, *Journal of the American Chemical Society*, 2012, 134, 17253-17261.
- 4. F. Song and X. Hu, *Nature communications*, 2014, 5, 4477.
- 5. N. Jiang, B. You, M. Sheng and Y. Sun, *Angewandte Chemie*, 2015, 54, 6251-6254.
- 6. Z. Yao, J. Yan, Y. Zhu, Q. Cai, A. Vasileff, H. L. Lu, H. Yu, C. Ying and S. Z. Qiao, *Journal* of the American Chemical Society, 2017, **139**, 3336-3339.
- 7. J. Nai, H. Yin, T. You, L. Zheng, J. Zhang, P. Wang, Z. Jin, Y. Tian, J. Liu and Z. Tang, *Advanced Energy Materials*, 2015, **5**, 1401880.
- 8. Z. Peng, D. Jia, A. M. Al Enizi, A. A. Elzatahry and G. Zheng, *Advanced Energy Materials*, 2015, **5**, 1402031.
- M. Zhu, Z. Zhang, H. Zhang, H. Zhang, X. Zhang, L. Zhang and S. Wang, *Journal of Colloid* & *Interface Science*, 2017, 9, 522-528.
- 10. P. Ganesan, M. Prabu, J. Sanetuntikul and S. Shanmugam, Acs Catalysis, 2015, 5, 3625-3637.