Supporting Information for

Hybrid NiO-CuO mesoporous nanowires array with abundant oxygen vacancies and hollow structure for high-performance asymmetric supercapacitor

Zhenbin Fanga, Sajid ur Rehmana, Mingze Suna, Yupeng Yuana, Shaowei Jinb, Hong Bia,*

a School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, P. R. China

b School of Physics and Materials Science, Anhui University, Hefei 230601, P. R. China

* Corresponding author.

E–mail: bihong@ahu.edu.cn (H. Bi); Tel./Fax: +86 0551 63861279

Content

Fig. S1. SEM image of the NiO-CuO nanowires with Ni:Cu = 1:1.

Fig. S2. The SEM image and the corresponding EDS color mappings of Ni, Cu and O elements in the sample of NiO-CuO with Ni:Cu = 1:1.

Fig. S3. The IR spectra of the NiO-CuO samples with Ni:Cu = 1:0, 0:1 and 1:1.

Fig. S4. TEM image of the hollow structure of NiO-CuO sample with Ni:Cu = 1:1.

Fig. S5. Nitrogen adsorption-desorption isotherm of the NiO-CuO sample with Ni:Cu = 1:1 (inset: the pore-size distribution from the corresponding adsorption branch).

Fig. S6. XRD pattern of the hydrothermal product (Ni, Cu)$_2$CO$_3$(OH)$_2$ before annealing.

Fig. S7. SEM image of the hydrothermal product (Ni, Cu)$_2$CO$_3$(OH)$_2$ before annealing.

Fig. S8. TEM image of the hydrothermal product (Ni, Cu)$_2$CO$_3$(OH)$_2$ before annealing.

Fig. S9. High magnification SEM images of the NiO-CuO samples with different molar ratios of Ni:Cu = (a) 1:0, (b) 0:1, (c) 1:2 and (d) 2:1.

Fig. S10. XRD pattern of the NiO-CuO@Ni foam samples with different molar ratios of Ni:Cu = 1:0, 0:1, 1:2, 1:1 and 2:1.

Fig. S11. The XPS survey spectrum of the NiO-CuO with Ni:Cu = 1:1.

Fig. S12. (a) CV curves at a scan rate of 5 mV s$^{-1}$ and (b) GCD curves at a current density of 2 mA cm$^{-2}$ of the NiO-CuO with Ni:Cu = 1:1 and an individual Ni foam.
conducted under the same experimental conditions, respectively; (c) CV curves at different scan rates and (d) GCD curves at different current densities of Ni foam.

Fig. S13. The areal capacitances of the electrodes based on NiO-CuO with different molar ratios of Ni:Cu at different current densities.

Fig. S14. CV curves at different scan rates and GCD curves at different current densities of the electrodes based on NiO-CuO with different feed molar ratios of Ni:Cu: (a) and (b) 0:1; (c) and (d) 1:0; (e) and (f) 1:2, (g) and (h) 2:1.

Fig. S15. (a) Cycling performances of the electrodes based on NiO-CuO with different molar ratios of Ni:Cu at a current density of 20 mA cm$^{-2}$; SEM images of NiO-CuO with Ni:Cu (b) 1:0 and (c) 0:1 after 2 000 charge/discharge cycles.

Fig. S16. SEM image of the 3D porous graphene hydrogel (inset: the digital photo).

Fig. S17. (a) CV curves of PGH at different scan rates of 5, 10, 20, 30, 40 and 50 mV s$^{-1}$; (b) GCD curves of PGH at different current densities of 0.5, 1, 2, 3, 5 and 10 A g$^{-1}$, respectively.

Fig. S18. GCD curve of the NiO-CuO//PGH ASCs device within the first 10 charge/discharge cycles.

Fig. S19. XRD patterns of the NiO-CuO@Ni foam sample with Ni:Cu = 1:1 before and after 5 000 charge/discharge cycles.

Fig. S20. (a) Low and (b) high magnification SEM images of the NiO-CuO with Ni:Cu = 1:1 after 5 000 charge/discharge cycles.

Fig. S21. (a) TEM and (b) HR-TEM images of the NiO-CuO with Ni:Cu = 1:1 after 5 000 charge/discharge cycles.

Table S1. Previously reported data on metal oxides based electrodes in comparison with our work result.
Fig. S1. SEM image of the NiO-CuO nanowires with Ni:Cu = 1:1.

Fig. S2. The SEM image and the corresponding EDS color mappings of Ni, Cu and O elements in the sample of NiO-CuO with Ni:Cu = 1:1.

Fig. S3. The IR spectra of the NiO-CuO samples with Ni:Cu = 1:0, 0:1 and 1:1.
Fig. S4. TEM image of the hollow structure of NiO-CuO sample with Ni:Cu = 1:1.

Fig. S5. Nitrogen adsorption–desorption isotherm of the NiO-CuO sample with Ni:Cu = 1:1 (inset: the pore-size distribution from the corresponding adsorption branch).

Fig. S6. XRD pattern of the hydrothermal product \((\text{Ni, Cu})_2\text{CO}_3(\text{OH})_2\) before annealing.
Fig. S7. SEM image of the hydrothermal product (Ni, Cu)$_2$CO$_3$(OH)$_2$ before annealing.

Fig. S8. TEM image of the hydrothermal product (Ni, Cu)$_2$CO$_3$(OH)$_2$ before annealing.

Fig. S9. High magnification SEM images of the NiO-CuO samples with different molar ratios of Ni:Cu = (a) 1:0, (b) 0:1, (c) 1:2 and (d) 2:1.
Fig. S10. XRD pattern of the NiO-CuO@Ni foam samples with different molar ratios of Ni:Cu = 1:0, 0:1, 1:2, 1:1 and 2:1.

Fig. S11. The XPS survey spectrum of the NiO-CuO with Ni:Cu = 1:1.

Fig. S12. (a) CV curves at a scan rate of 5 mV s$^{-1}$ and (b) GCD curves at a current density of 2 mA cm$^{-2}$ of the NiO-CuO with Ni:Cu = 1:1 and an individual Ni foam conducted under the same experimental conditions, respectively; (c) CVs at different scan rates and (d) GCDs at different current densities of Ni foam.
Fig. S13. The areal capacitances of the electrodes based on NiO-CuO with different molar ratios of Ni:Cu at different current densities.

Fig. S14. CV curves at different scan rates and GCD curves at different current densities of the electrodes based on NiO-CuO with different feed molar ratios of Ni:Cu: (a) and (b) 0:1; (c) and (d) 1:0; (e) and (f) 1:2; (g) and (h) 2:1.
Fig. S15. (a) Cycling performances of the electrodes based on NiO-CuO with different molar ratios of Ni:Cu at a current density of 20 mA cm$^{-2}$; SEM images of NiO-CuO with Ni:Cu (b) 1:0 and (c) 0:1 after 2 000 charge/discharge cycles.

Fig. S16. SEM image of the 3D porous graphene hydrogel (inset: the digital photo).

Fig. S17. (a) CV curves of PGH at different scan rates of 5, 10, 20, 30, 40 and 50 mV s$^{-1}$; (b) GCD curves of PGH at different current densities of 0.5, 1, 2, 3, 5 and 10 A g$^{-1}$, respectively.
Fig. S18. GCD curve of the NiO-CuO//PGH ASCs device within the first 10 charge/discharge cycles.

Fig. S19. XRD patterns of the NiO-CuO@Ni foam sample with Ni:Cu = 1:1 before and after 5 000 charge/discharge cycles.

Fig. S20. (a) Low and (b) high magnification SEM images of NiO-CuO with Ni:Cu = 1:1 after 5 000 charge/discharge cycles.
Fig. S21. (a) TEM and (b) HR-TEM images of the NiO-CuO with Ni:Cu = 1:1 after 5 000 charge/discharge cycles.
Table S1. Previously reported data on metal oxides based electrodes in comparison with our work result.

<table>
<thead>
<tr>
<th>Materials</th>
<th>Specific capacitance (F g⁻¹)</th>
<th>Areal capacitance (F cm⁻²)</th>
<th>Current density or scan rate</th>
<th>Electrolyte</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>NiO</td>
<td>302</td>
<td>-</td>
<td>1 A g⁻¹</td>
<td>6 M KOH</td>
<td>S1</td>
</tr>
<tr>
<td>CuO</td>
<td>431</td>
<td>1.51</td>
<td>3.5 mA cm⁻²</td>
<td>3 M KOH</td>
<td>S2</td>
</tr>
<tr>
<td>Cu2O/CuO/Co₃O₄</td>
<td>318</td>
<td>-</td>
<td>0.5 A g⁻¹</td>
<td>3 M KOH</td>
<td>S3</td>
</tr>
<tr>
<td>NiO/NiMn-LDH</td>
<td>937</td>
<td>-</td>
<td>0.5 A g⁻¹</td>
<td>3 M KOH</td>
<td>S4</td>
</tr>
<tr>
<td>CuCo₂O₄/CuO</td>
<td>781</td>
<td>-</td>
<td>2 mV s⁻¹</td>
<td>1 M KOH</td>
<td>S5</td>
</tr>
<tr>
<td>Ni₀.₉₉Cu₀.₀₁O</td>
<td>559</td>
<td>-</td>
<td>0.3 A g⁻¹</td>
<td>6 M KOH</td>
<td>S6</td>
</tr>
<tr>
<td>Ni/NiO</td>
<td>526</td>
<td>-</td>
<td>1 A g⁻¹</td>
<td>3 M KOH</td>
<td>S7</td>
</tr>
<tr>
<td>NiO/α-Ni(OH)₂</td>
<td>707</td>
<td>-</td>
<td>2 A g⁻¹</td>
<td>2 M KOH</td>
<td>S8</td>
</tr>
<tr>
<td>Ni-Co binary hydroxide</td>
<td>1030</td>
<td>-</td>
<td>1 mg cm⁻²</td>
<td>6 M KOH</td>
<td>S9</td>
</tr>
<tr>
<td>NiO@MnO₂</td>
<td>266.7</td>
<td>-</td>
<td>0.5 A g⁻¹</td>
<td>2 M KOH</td>
<td>S10</td>
</tr>
<tr>
<td>NiO-Co₃O₄</td>
<td>801</td>
<td>-</td>
<td>1 A g⁻¹</td>
<td>3 M KOH</td>
<td>S11</td>
</tr>
<tr>
<td>ZnO-NiO</td>
<td>649</td>
<td>-</td>
<td>5.8 A g⁻¹</td>
<td>3 M KOH</td>
<td>S12</td>
</tr>
<tr>
<td>Cu/Ni-based manganese dioxide</td>
<td>374</td>
<td>-</td>
<td>0.25 A g⁻¹</td>
<td>1 M Na₂SO₄</td>
<td>S13</td>
</tr>
<tr>
<td>NiCo₂O₄ nanowires</td>
<td>743</td>
<td>-</td>
<td>1 A g⁻¹</td>
<td>1 M KOH</td>
<td>S14</td>
</tr>
<tr>
<td>NiCu(OH)₂CO₃</td>
<td>971</td>
<td>-</td>
<td>1 A g⁻¹</td>
<td>6 M KOH</td>
<td>S15</td>
</tr>
<tr>
<td>NiO-CuO</td>
<td>1450.8</td>
<td>4.35</td>
<td>2 mA cm⁻²</td>
<td>3 M KOH</td>
<td>Our work</td>
</tr>
</tbody>
</table>
References

