Supporting Information

High Thermoelectric Performance in Complex Phosphides

Enabled by Stereochemically Active Lone Pair Electrons

Xingchen Shen, a,f,† Yi Xia, b,† Guiwen Wang, c Fei Zhou, d Vidvuds Ozolins, e Xu Lu, a,* Guoyu Wang, f,* Xiaoyuan Zhou, a,c,*

a Chongqing Key Laboratory of Soft Condensed Matter Physics and Smart Materials, College of Physics, Chongqing University, Chongqing, Chongqing 401331, P. R. China
b Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA
c Analytical and Testing Center of Chongqing University, Chongqing 401331, P. R. China
d Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, California 94550, USA
e Department of Applied Physics, Yale University, New Haven, Connecticut 06511, USA, and Energy Sciences Institute, Yale University, West Haven, Connecticut 06516, USA
f Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences Chongqing 400714, P. R. China and University of Chinese Academy of Sciences, Beijing, 100044, P. R. China

† X. S. and Y. X. contributed equally to this work.
* Corresponding author: luxu@cqu.edu.cn; guoyuw@cigit.ac.cn; xiaoyuan2013@cqu.edu.cn
Fig. S1. Measured heat capacity of Ag₆Ge₁₀P₁₂.
Fig. S2. (a, b) SEM-EDX elemental mapping images of the surface of $\text{Ag}_6\text{Ge}_{9.7}\text{Ga}_{0.3}\text{P}_{12}$.
Fig. S3. (a) Brillouin zone of the bcc unit cell of Ag$_6$Ge$_{10}$P$_{12}$; (b) Fermi surface of hole carriers for the Fermi level set at 50 meV below the VBM.
Fig. S4. (a) and (b) Band structure of Ag$_6$Ge$_9$GaP$_{12}$. (c) and (d) Atom-decomposed density of states Ag$_6$Ge$_9$GaP$_{12}$. In (a) and (c) Ga substitutes Ge(1), while in (b) and (d) Ga substitutes Ge(2). The dashed red line indicates the Fermi level.
Fig. S5. (a) Calculated phonon mode group velocity; (b) Calculated phonon mode lifetime at 300 K.